Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-02T12:55:39.828Z Has data issue: false hasContentIssue false

An Overview of Doping Strategies in Si:MBE

Published online by Cambridge University Press:  22 February 2011

Richard Kubiak
Affiliation:
Department of Physics, University of Warwick, Coventry, CV4 7AL, England
Carl Parry
Affiliation:
Department of Physics, University of Warwick, Coventry, CV4 7AL, England
Get access

Abstract

This paper reviews the diverse methods used to achieve doping during MBE of Si and SiGe, and the incorporation processes involved. The optimum choice of dopant and methodology depends on the most appropriate growth conditions for a given structure. At growth temperatures exceeding 750°C, Potential Enhanced n-type doping of coevaporated Sb is capable of achieving high resolution structures, at doping levels up to mid-1019 cm−3. At lower temperatures, such as those most suited to SiGe growth, Sb-doping becomes a formidable challenge, due to the high accumulated equilibrium coverages required. Low energy ion implantation appears to be the favoured route for good control, p-type B-doping can readily be achieved by coevaporation of compounds or, to avoid oxygen incorporation at low temperatures, the element. A “designer” chart for B-doping of Si is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Luryi, S. and Sze, S.M., in Silicon-Molecular Beam Epitaxy, edited by Kasper, E. and Bean, J.C. (CRC Press, Florida, 1988), p. 161 Google Scholar
2. Allen, F. and Kasper, E., in Silicon-Molecular Beam Epitaxy, edited by Kasper, E. and Bean, J.C. (CRC Press, Florida, 1988), p.65 Google Scholar
3. Burton, W. K., Cabrera, N. and Frank, F. C., Philos. Trans. R. Soc. London Ser. A, 243, (1951) 299 Google Scholar
4. Schlüter, M., in The Chemical Physics of Solid Surfaces and Heteroeenous Catalysis, edited by King, D. A. and Woodruff, D. P. (Elsevier Science Publishers, Amsterdam, 1988) p. 37 Google Scholar
5. Pindoria, G., Kubiak, R. A. A., Newstead, S. M. and Woodruff, D. P., Surface Science, 234 (1990) 17 CrossRefGoogle Scholar
6. Kubiak, R. A. A., Parker, E. H. C. and Iyer, S. S., in Silicon-Molecular Beam Epitaxy, edited by Kasper, E. and Bean, J. C. (CRC Press, Florida, 1988), p.5 Google Scholar
7. Shiraki, Y., in The Technology and Physics of Molecular Beam Epitaxy, edited by Parker, E. (Plenum Press, 1985)Google Scholar
8. Bean, J. C., Appl. Phys. Lett., 33 (1978) 654 CrossRefGoogle Scholar
9. Becker, G. E. and Bean, J.C., J. Appl. Phys., 48, (1977) 3395 CrossRefGoogle Scholar
10. Iyer, S. S., Metzger, R. A. and Allen, F. G.., J. Appl. Phys., 52 (1981) 5608 Google Scholar
11. Streit, D., Metzger, R. A., Allen, F. G., Appl. Phys. Lett., 44 (1984) 234 Google Scholar
12. Metzger, R. A. and Allen, F. G., J. Appl. Phys., 55 (1984) 931 CrossRefGoogle Scholar
13. Konig, U., Kibbel, J. H. and Kasper, E., J. Vac. Sci. Technol., 16 (1979) 985 CrossRefGoogle Scholar
14. Iyer, S. S., Kubiak, R. A. A. and Parker, E. H. C., in Silicon-Molecular Beam Epitaxy, edited by Kasper, E. and Bean, J. C. (CRC Press, Florida, 1988), p.31 Google Scholar
15. Tabe, M. and Kajiyama, K., Jpn. J. Appl. Phys., 22 (1983) 423 CrossRefGoogle Scholar
16. Barnett, S. A. and Greene, J. E., Surface Science, 151 (1985) 67 Google Scholar
17. Sundgren, J. -E., Knall, J., Ni, W. -X., Hasan, M. -A., Markert, L. C. and Greene, J. E., Thin Solid Films 183 (1989) 281 Google Scholar
18. Wood, C.E.C., in Molecular Beam Epitaxy and Heterostructures, edited by Chang, L. L. and Ploog, K. (Kluwer Academic, Dordrecht, 1985) p. 149 CrossRefGoogle Scholar
19. Strictly speaking, segregation describes a bulk process involving separation from an alloy, and can be applied only loosely in the context of the processes limiting dopant incorporation. For this reason, “surface accumulation” is used in the text to describe the phenomenon.Google Scholar
20. Andrieu, S., Arnaud d'Avitaya, F. and Pfister, J. C., J. Appl. Phys., 65 (1989) 2681 CrossRefGoogle Scholar
21. Harris, J. J., Ashenford, D. E., Foxon, C. T., Dobson, P. J. and Joyce, B. A., Appl. Phys. A, 33 (1984) 87 CrossRefGoogle Scholar
22. Ni, W. -X., Knall, J., Hasan, M. A., Hansson, G. V., Sundgren, J. -E., Barnett, S. A., Markért, L. C. and Greene, J. E., Phys. Rev. B40 (1989) 10449 Google Scholar
23. Kubiak, R. A. A., Leong, W. Y. and Parker, E. H. C., Appl. Phys. Lett., 46 (1985) 565 CrossRefGoogle Scholar
24. Kubiak, R. A. A., Leong, W. Y. and Parker, E. H. C., Hectrochem, J.. Soc., 132 (1985) 2738 Google Scholar
25. Hasan, M. A., Knall, J., Barnett, S. A., Rockett, A., Sundgren, J. -E. and Greene, J. E., J. Vac. Sci. Technol., 5 (1987) 1332 Google Scholar
26. Kubiak, R. A. A., Leong, W. Y. and Parker, E. H. C., Appl. Phys. Lett., 44 (1984) 878 CrossRefGoogle Scholar
27. Kubiak, R. A. A., Leong, W. Y. and Parker, E. H. C., J. Vac. Sci. Technol., B3 (1985) 592 Google Scholar
28. Kubiak, R. A. A., Patel, G., Leong, W. Y., Houghton, R. and Parker, E. H. C., Appl. Phys., A41 (1986) 233 CrossRefGoogle Scholar
29. Jorke, H., Surface Science, 193 (1988) 569 Google Scholar
30. Jorke, H., Kibbel, H., Schaffler, F., Casel, A., Herzog, H. -J. and Kasper, E., Appl. Phys. Lett., 54 (1989) 819 Google Scholar
31. Casel, A., Jorke, H., Kasper, E. and Kibbel, H., Appl. Phys. Lett., 48 (1986) 922 CrossRefGoogle Scholar
32. Eaglesham, D. J., Gossman, H. -J. and Cernilo, M., Phys. Rev. Lett., 65 (1990) 1227 CrossRefGoogle Scholar
33. Jorke, H., Herzog, H. -J. and Kibbel, H., Appl. Phys. Lett., 47 (1985) 511 CrossRefGoogle Scholar
34. Jorke, H. and Kibbel, H., J. Electrochem. Soc., 133 (1986) 774 CrossRefGoogle Scholar
35. Kubiak, R. A. A., Newstead, S. M., Leong, W. Y., Houghton, R., Parker, E. H. C. and Whall, T. E., Appl. Phys., A42 (1987) 197 Google Scholar
36. Bean, J. C., J. Crystal Growth, 81 (1987) 411 CrossRefGoogle Scholar
37. Fritzsch, B., Wolf, B. and Zehe, A., Solid State Comm., 72 (1989) 13 Google Scholar
38. Delage, S. L., PhD dissertation. University of Paris, 1985 Google Scholar
39. Ostrom, R. M. and Allen, F. G., Appl. Phys. Lett., 48 (1986) 221 Google Scholar
40. Tatsumi, T., Hirayama, H. and Aizaki, N., Jpn. J. Appl. Phys., 27 (1988) L954 CrossRefGoogle Scholar
41. Jackman, T. E., Houghton, D. C., Denhoff, M. W., Kechang, S., McCaffrey, J., Jackman, J. A. and Tuppen, C. G., Appl. Phys. Lett., 53 (1988) 877 Google Scholar
42. Tuppen, C. G., Prior, K. A., Gibbings, C. J., Houghton, D. C. and Jackman, T. E., J. Appl. Phys., 64 (1988) 2751 Google Scholar
43. Lin, T. L., Fathauer, R. W. and Grunthaner, P. J., Appl. Phys. Lett., 55 (1989) 795 Google Scholar
44. Headrick, R. L., Weir, B. E., Levi, A. F. J., Eaglesham, D. J. and Feldman, L. C., Appl. Phys. Lett., 57 (1990) 2779 Google Scholar
45. Tatsumi, T., Thin Solid Films, 184 (1990) 1 Google Scholar
46. Lin, T. L., Fathauer, R. W. and Grunthaner, P. J., Thin Solid Films, 184 (1990) 31 Google Scholar
47. Kuznetsov, V. P., Loginova, R. G., Ovsyannikov, M. I. and Postnikov, V. V., Protsessy Rosta Strukt. Monokrist Sloev. Poluprov., Tr. Simp., 1 (1986) 483; and refs thereinGoogle Scholar
48. Mishima, T., Fredriksz, C. W., van der Walle, G. F. A., Gravesteijn, D. J., van den Heuvel, R. A. and van Gorkum, A. A., Appl. Phys. Lett., 57 (1990) 2567 CrossRefGoogle Scholar
49. Iyer, S. S. and Ek, B. A., Paper B4.5, this conferenceGoogle Scholar
50. EPI Inc., USAGoogle Scholar
51. Andrieu, S., Chroboczek, J. A., Campidelli, Y., Andre, E. and Arnaud d'Avitaya, F., J. Vac. Sci. Technol., B6 (1988) 835 Google Scholar
52. Kibbel, H., Kasper, E., Narozny, P. and Schreiber, H. -U., Thin Solid Films, 184 (1990) 163 Google Scholar
53. Newstead, S. M., Kubiak, R. A., Parry, C. P., Naylor, T., Parker, E. H. C. and Whall, H. -U., Design and performance of a simple high temperature source, in preparationGoogle Scholar
54. Denhoff, M. W., J. Vac. Sci. Technol., B8 (1990) 1035 Google Scholar
55. Jackman, T. E., Houghton, D. C., Jackman, J. A., Denhoff, M. W., Kechang, S., McCaffrey, J. and Rockett, A., J. Appl. Phys., 66 (1989) 1984 Google Scholar
56. Parry, C. P., Newstead, S. M., Barlow, R. D., Augustus, P. D., Kubiak, R. A. A., Dowsett, M. G., Whall, T. E. and Parker, E. H. C., Appl. Phys. Lett., 58 (1991) 481 CrossRefGoogle Scholar
57. Parry, C. P., Kubiak, R. A. A., Newstead, S. M., Whall, T. E. and Parker, E. H. C., Solid solubility limits of boron in silicon as determined by silicon molecular beam epitaxy. submitted J. Appl. Phys.Google Scholar
58. Parry, C. P., Kubiak, R. A., Newstead, S. M., James, D. M., Basaran, E., Parker, E. H. C. and Whall, T. E.. Paper B3.3, This conf.Google Scholar
59. Powell, A. R., Mattey, N. L., Kubiak, R. A. A., Parker, E. H. C., Whall, T. E. and Bowen, D. K., Semicond. Sci. Technol., 6 (1991) 227 Google Scholar
60. Parry, C. P., Kubiak, R. A., Newstead, S. M., Basaran, E., Parker, E. H. C. and Whall, T. E.. Paper B4.2, This conf.Google Scholar
61. Rhee, S. S., Karunasiri, R. P. G., Chern, C. H., Park, J. S. and Wang, K. L., J. Vac. Sci. Technol., B7 (1989) 327 CrossRefGoogle Scholar
62. Jorke, H. and Kibbel, H., Appl. Phys. Lett., 57 (1990) 1763 Google Scholar
63. Nayak, D. K., Woo, J. C. S., Park, J. S., Wang, K. L. and MacWilliams, K. P., IEEE Elec. Dev. Lett., 127 (1991) 154 CrossRefGoogle Scholar
64. Sugiura, H., Jpn. J. Appl. Phys. Suppl., 19–1 (1980) 641 Google Scholar
65. Ota, Y., J. Appl. Phys., 51 (1980) 1102 Google Scholar
66. Bean, J. C. and Sadowski, E. A., J. Vac. Sci. Technol., 20 (1982) 137 Google Scholar
67. Swartz, R. G., McFee, J. H., Voschenkov, A. M., Finegan, S. N. and Ota, Y., Appl. Phys. Lett., 40 (1982) 239 Google Scholar
68. Gordon, J. S., Bousetta, A., van den Berg, J. A., Armour, D. G., Kubiak, R. and Parker, E. H. C., Nucl. Instr. Meth. Phys. Res., B55 (1991) 314 Google Scholar
69. Bousetta, A., van den Berg, J. A., Valizadeh, R. and Armour, D. G., Nucl. Instr. Meth. Phys. Res., B55 (1991) 565 Google Scholar