No CrossRef data available.
Published online by Cambridge University Press: 22 March 2013
Dielectric capacitors for energy storage are of great importance in modern electronics and electric systems. It is a challenge to realize the high energy density while maintain the low dielectric loss. We investigated an ultra high breakdown electric field of 1.1 GV/m, which is approaching the intrinsic breakdown, in aromatic polythiourea, a new dielectric material that serves a high energy density of 23 J/cm3 as well as high charge-discharge efficiency above 90%. The molecular structure and film surface morphology were also studied, it was proved a polar amorphous phase and glass state material could significantly suppress the high field conduction to several orders smaller compared with regular polymer dielectric materials, which are usually semi-crystalline and in rubber phase.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.