Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-17T20:56:40.919Z Has data issue: false hasContentIssue false

Barrier-Controlled Transport in Doped Microcrystalline Si

Published online by Cambridge University Press:  17 March 2011

S. Brehme
Affiliation:
Hahn-Meitner-Institut Berlin, Abteilung Silizium-Photovoltaik, Kekuléstr. 5, D-12489 Berlin, Germany
P. Kanschat
Affiliation:
Hahn-Meitner-Institut Berlin, Abteilung Silizium-Photovoltaik, Kekuléstr. 5, D-12489 Berlin, Germany
W. Fuhs
Affiliation:
Hahn-Meitner-Institut Berlin, Abteilung Silizium-Photovoltaik, Kekuléstr. 5, D-12489 Berlin, Germany
Get access

Abstract

Thin μc-Si films doped with P and B are grown on glass at temperatures between 300 °C and 400 °C by electron cyclotron resonance chemical vapor deposition (ECR-CVD). Hall mobilities in the films are found to be temperature-activated with activation energies being correlated to the doping concentrations. The in-grain mobility as determined by an electron spin resonance investigation is much higher than the Hall mobility the values of which are typically near 1 cm2/Vs at 300 K. The experimental results suggest that transport is dominated by potential barriers at the grain boundaries. An extended Seto model is used to probe the interface trap distribution. We obtained the best fitting results by assuming band-tail states decaying exponentially from the respective band edges.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Werner, J. H., Solid-State Phenom., 37–38, 213218 (1994).Google Scholar
2. Willeke, G., Spear, W. E., Jones, D. I., Combers, P. G. Le, Phil. Mag., B 46, 177190 (1982).Google Scholar
3. Seto, J. Y. W., J. Appl. Phys. 46, 5247 (1975).Google Scholar
4. Baccarani, G., Riccò, B. and Spadini, G., J. Appl. Phys., 49, 55655570 (1978).Google Scholar
5. Seager, C. H. and Castner, T. G., J. Appl. Phys., 49, 38793889 (1978).Google Scholar
6. Müller, P., Beckers, I., Conrad, E., Elstner, L., Fuhs, W., Proc. 25th IEEE PVSC, Washington D.C., 1996, p. 673.Google Scholar
7. Yamanouchi, C., Mizuguchi, K. and Sasaki, W., J. Phys. Soc. Jap., 22, 859 (1967).Google Scholar
8. Bethe, H. A., MIT Radiat. Lab. Rep. No. 43–12 (1942).Google Scholar
9. Brehme, S., Kanschat, P., Lips, K., Sieber, I. and Fuhs, W., Mat. Sci. and Engineer., B69–70, 232237 (2000).Google Scholar
10. Elliot, R. J., Phys. Rev., 96, 266 (1954).Google Scholar
11. Hasegawa, S., Narikawa, S. and Kurata, Y., Phil. Mag., B 48, 431 (1983).Google Scholar
12. , Landolt-Börnstein, Numerical data and functional relationships in science and technology: new series, Vol. III/22b, Springer, Berlin(1989), p. 270.Google Scholar
13. Werner, J. H., in Polycrystalline Semiconductors, Eds. Werner, J. H., Möller, H. J., Strunk, H. P., Springer, Berlin (1989), p. 345.Google Scholar
14. Kanschat, P., Mell, H., Lips, K., Fuhs, W., this conference (MRS Spring Meeting 2000, Symposium A: Amorphous and Heterogeneous Silicon Thin Films - 2000).Google Scholar