Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-13T05:30:15.834Z Has data issue: false hasContentIssue false

Characterization of AlGaAs/InGaAs/GaAs Heteroepitaxial Layers by Transmission Electron Microscopy and Energy Dispersive Spectroscopy

Published online by Cambridge University Press:  25 February 2011

R. S. Rai
Affiliation:
Bandgap Technology Corporation, 325 Interlocken Parkway, Broomfield, CO 80021
J. M. Tartaglia
Affiliation:
Bandgap Technology Corporation, 325 Interlocken Parkway, Broomfield, CO 80021
W. E. Quinn
Affiliation:
Bandgap Technology Corporation, 325 Interlocken Parkway, Broomfield, CO 80021
D. C. Martel
Affiliation:
Bandgap Technology Corporation, 325 Interlocken Parkway, Broomfield, CO 80021
Get access

Abstract

AlGaAs/InGaAs/GaAs heteroepitaxial layers grown by molecular beam epitaxy were studied by cross-sectional transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). The presence of waviness/roughness, fine periodic striation contrast due to Al composition oscillations, and defects were observed by TEM in selected samples. EDS on the TEM was of limited utility in determining the composition of thin epitaxial layers and in comparing the composition near and away from a defect. Arguments are presented to rationalize these results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cho, A. Y., Dixon, R. W., Casey, H. C. Jr, and Hartmann, R. L., Appl. Phys. Lett. 28 (1976)501.Google Scholar
2. Tsang, W. T., Appl. Phys. Lett. 34 (1979) 473.Google Scholar
3. Mimura, T., Hiyamizu, S., Fujii, T., and Nanbu, K., Japan. J. Appl. Phys. 19 (1980) L225.Google Scholar
4. Tiwari, S., Wright, S. L., and Kleinsasser, A. W., IEEE Trans. Elect. Devices ED–34 (1987) 185.Google Scholar
5. Susa, N. and Okamoto, H., Japan. J. Appl. Phys. 23 (1984) 317.Google Scholar
6. Wang, G. W., Chen, Y. K., Radulescu, D. C., and Eastman, L. F., IEEE Electron Device Lett. 9 (1988) 4.Google Scholar
7. Bravman, J. C. and Sinclair, R., J. Elect. Micro. Tech. 1 (1984) 53.Google Scholar
8. Petroff, P. M., J. Vac. Sci. Technol. 14 (1977) 973.Google Scholar
9. Leys, M. R., Van Opdorp, C., Viegers, M. A. P., and Talen-Van der Meen, H. J., J. Cryst. Growth 68 (1984) 431.Google Scholar
10. Burton, W. K., Carbrera, N., and Frank, F. C., Phil. Trans. Roy. Soc. London A243 (1949) 299.Google Scholar
11. Mahajan, S., Keramidas, V. G., Chin, A. K., Bonner, W. A., and Ballman, A. A., Appl. Phys Lett. 38 (1981) 255.Google Scholar
12. Alavi, K., Petroff, P. M., Wagner, W. R., and Cho, A. Y., J. Vac. Sci. Technol. Bl (1983) 146.Google Scholar