Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-01T06:18:05.664Z Has data issue: false hasContentIssue false

Controlled Structure of Gallium Oxide and Indium Oxide Nanowires

Published online by Cambridge University Press:  01 February 2011

Hye Jin Chun
Affiliation:
Dept. of Chemistry, Korea University, Seoul 136–701, South Korea
Seung Yong Bae
Affiliation:
Dept. of Material Chemistry, Korea University, Jochiwon 339–700, South Korea
Jeunghee Park
Affiliation:
Dept. of Material Chemistry, Korea University, Jochiwon 339–700, South Korea
Get access

Abstract

Gallium oxide (Ga2O3) and indium oxide (In2O3) nanostructures were synthesized by chemical vapor deposition (CVD). Ga2O3 nanowires were synthesized using Ga/Ga2O3 mixture and O2. The diameter of the nanowires is 30–80 nm with an average value of 50 nm. They are consisted of single-crystalline monoclinic crystal. While the nanowires grown without catalyst exhibit a significant planar defect, the nanowires grown with nickel catalytic nanoparticles are almost defect-free. The growth direction of the nanowires grown without the catalyst is uniformly [010]. In contrast, the nanowires grown with the catalyst have random growth direction. X-ray diffraction, Raman spectroscopy, and photoluminescence are well correlated with the structural characteristics of the nanowires. The result provides an evidence for the catalyst effect in controlling the structure of nanowires. In2O3 nanostructures were also synthesized in a controlled manner by selecting the catalyst. The reactants were In and In/In2O3 mixture. The nanowires were produced using catalytic Au nanoparticles and Ga. But the unique bifurcated-structure nanobelts were instead grown without Ga. The nanowires have uniform [100] growth direction with rectangular cross-section. We converted the In2O3 nanowires to In2O3-Ga2O3 nanostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iijima, S., Nature 354, 56 (1991).Google Scholar
2. Hu, J., Odom, T. W. and Lieber, C. M., Acc. Chem. Res. 32, 435 (1999).Google Scholar
3. Passlack, M., Schubert, E. F., Hobson, W. S., Hong, M., Moriya, N., Chu, S. N. G., Konstadinidis, K., Mannaerts, J. P., Schnoes, M. L. and Zydzik, G. J., J. Appl. Phys. 77, 686 (1995).Google Scholar
4. Binet, L. and Gourier, D., J. Phys. Chem. Solids 59, 1241 (1998).Google Scholar
5. Ogita, M., Saika, N., Nakanishi, Y. and Hatanaka, Y., Appl. Surf. Sci. 142, 188 (1999).Google Scholar
6. Han, W. Q., Kohler-Redlich, P., Ernst, F. and Rühle, M., Solid State Commun. 115, 527 (2000).Google Scholar
7. Hu, J. Q., Li, Q., Meng, X. M., Lee, C. S. and Lee, S. T., J. Phys. Chem. B 106, 9536 (2002).Google Scholar
8. Zhang, H. Z., Kong, Y. C., Wang, Y. Z., Du, X., Bai, Z. G., Wang, J. J., Yu, D. P., Ding, Y., Hang, Q. L. and Feng, S. Q., Solid State Commun. 109, 677 (1999).Google Scholar
9. Wu, X. C., Song, W. H., Huang, W. D., Pu, M. H., Zhao, B., Sun, Y. P. and Du, J. J., Chem. Phys. Lett. 328, 5 (2000).Google Scholar
10. Sreenivas, K., Rao, T. S., Mansingh, A. and Chandra, S., J. Appl. Phys. 57, 384 (1985).Google Scholar
11. Li, X., Wanlass, M. W., Gessert, T. A., Emery, K. A. and Coutts, T. J., Appl. Phys. Lett. 54, 2674 (1989).Google Scholar
12. Shigesato, Y., Takaki, S. and Haranoh, T., J. Appl. Phys. 71, 3356 (1992).Google Scholar
13. Pan, Z. W., Dai, Z. R. and Wang, Z. L., Science 291, 1947. (2001).Google Scholar
14. Cheng, B. and Samulski, E. T., J. Mater. Chem. 11, 2901 (2001).Google Scholar
15. Zheng, M. J., Zhang, L. D., Li, G. H., Zhang, X. Y. and Wang, X. F., Appl. Phys. Lett. 79, 839 (2001).Google Scholar
16. Yang, H., Shi, Q., Tian, B., Lu, Q., Gao, F., Xie, S., Fan, J., Yu, C., Tu, B. and Zhao, D., J. Am. Chem. Soc. 125, 4724 (2003).Google Scholar
17. Dohy, D., Lucazeau, G. and Revcolevschi, A., J. Solid State Chem. 45, 180 (1982).Google Scholar
18. Gao, Y. H., Bando, Y., Sato, T., Zhang, Y. F. and Gao, X. Q., Appl. Phys. Lett. 81, 2267 (2002).Google Scholar
19. Harwig, T. and Kellendonk, F., J. Solid Sate Chem. 24, 255 (1978).Google Scholar
20. Vasil'tsiv, V. I., Zakharko, Ya. M. and Prim, Ya. I., Ukr. Fiz. Zh. 33, 1320 (1988).Google Scholar