Published online by Cambridge University Press: 15 February 2011
Time resolved optical reflectivity (TRR) and Rutherford backscattering spectrometry (RBS) and ion channelling methods have been applied to determine the crystallization kinetics of Fe-doped A1203 in the temperature range of 900-1050°C. Amorphous A1203 films, approximately 250 nm thick and with Fe cation concentrations of 0, 1.85, 2.2 and 4.5%, were formed by e-beam deposition on single crystal, [0001] oriented, A1203 substrates. Annealing was performed under an oxygen ambient in a conventional tube furnace, and the optical changes which accompany crystallization were monitored, in situ, by TRR with a 633nm wavelength laser.
Crystallization is observed to proceed via solid phase epitaxy. An intermediate, epitaxial phase of -γ-Al203 is formed before the samples reach the ultimate annealing temperature. The 5% Fe-doped film transforms from γ to α-A1203 at a rate approximately 10 times that of the pure A1203 film and the 1.85% and 2.2% Fe-doped films transform at rates between these two extremes. The Fe-dopants occupy substitional lattice sites in the epilayer. Each of the four sets of specimens displays an activation energy in the range 5.0±0.2eV for the γ,α phase transition.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.