Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-03T10:39:01.922Z Has data issue: false hasContentIssue false

Crystallographic Features of Rhenium Disilicide

Published online by Cambridge University Press:  01 February 2011

K. Tanaka
Affiliation:
Department of Advanced Materials Science, Kagawa University, Takamatsu 761–0396, Japan
H. Inui
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606–8501, Japan
T. Ohba
Affiliation:
Department of Material Science, Shimane University, Matsue 690–8504, Japan
S. Tsutsui
Affiliation:
Japan Synchrotron Radiation Research Institute, Sayo 679–5198, Japan
M. Mizumaki
Affiliation:
Japan Synchrotron Radiation Research Institute, Sayo 679–5198, Japan
Get access

Abstract

Crystallographic features of Rhenium disilicide have been examined by powder and single-crystal X-ray diffractometry with a synchrotron radiation. The chemical composition of the compound is determined as Re4Si7 (ReSi2-x, x = 0.25) from lattice constants and specific density determined. The structure is defined as a vacancy ordered structure with the space group of Cm. The positions of the constituent atoms in the structure have been refined. The positions of silicon atoms apparently shift from the ideal positions of the C11b structure which is the structure without containing structural vacancies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shiau, F. Y., Cheng, H. C. and Chen, L. J., J. Appl. Phys. 59, 2784 (1986).Google Scholar
2. Mazur, H. and Jamieson, D. N., J. Vac. Sci. Technol. B6, 708 (1988).Google Scholar
3. Vining, C. B., Proc. 9th ICT, Pasadena, 249 (1990).Google Scholar
4. Becker, J. P., Mahan, J. E., Long, R. G., J. Vac. Sci. Technol. A13, 1133 (1995).Google Scholar
5. Nesphor, V. S. and Samsonov, G. V., Phys. Met. Metall. 11, 146 (1960).Google Scholar
6. Jorda, J. L., Ishikawa, M. and Muller, J., J. Less-Comm. Met. 85, 27 (1982).Google Scholar
7. Siegrist, T., Hulliger, F. and Travaglini, G., J. Less-Comm. Met. 92, 119 (1983).Google Scholar
8. Gottlieb, U., Lambert-Andron, B., Nava, F., Affronte, M., Laborde, O., Rouault, A. and Mader, R., J. Appl. Phys. 78, 3902 (1995).Google Scholar
9. Kuwabara, K., Inui, H. and Yamaguchi, M., Intermetallics 10, 129 (2002).Google Scholar
10. Gu, J.-J., Kuwabara, K., Tanaka, K., Inui, H., Yamaguchi, M., Yamamoto, A., Ohta, T. and Obara, H., MRS Symp. Proc. 753, 501 (2003).Google Scholar
11. Mishra, A., Chu, F. and Mitchell, T. E., Philos. Mag. A 79, 1411 (1999).Google Scholar
12. Itoh, S., Mater. Sci. Eng. B6, 37 (1990).Google Scholar