Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-02T02:57:58.006Z Has data issue: false hasContentIssue false

Diffusion and Effusion of Hydrogen in Microcrystalline Silicon

Published online by Cambridge University Press:  15 February 2011

W. Beyer
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jülich, D-52425 Jülich, Germany
P. Hapke
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jülich, D-52425 Jülich, Germany
U. Zastrow
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jülich, D-52425 Jülich, Germany
Get access

Abstract

The diffusion and effusion of hydrogen in hydrogenated microcrystalline silicon films deposited in an electron cyclotron resonance reactor were studied for various deposition temperatures Ts. For deposition temperatures below 250°C, hydrogen effusion is found to be dominated by desorption of hydrogen from internal surfaces followed by rapid out-diffusion of H2. Higher substrate temperatures result in an increased hydrogen stability suggesting the growth of a more compact material. For this latter type of samples, a hydrogen diffusion coefficient similar as in compact plasma-grown a-Si:H films is found despite a different predominant bonding of hydrogen according to infrared absorption.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Beyer, W., Herion, J., Wagner, H. and Zastrow, U., Philos. Mag. B 63, 269 (1991).Google Scholar
2. Veprek, S., Sarott, F.A. and Iqbal, Z., Phys. Rev. B 36, 3344 (1987).Google Scholar
3. Ito, T., Yasumatsu, T., Watabe, H., Iwami, M. and Hiraki, A., Mat. Res. Soc. Symp. Proc. 164, 205 (1990)Google Scholar
4. Langford, A.A., Fleet, M.L., Nelson, B.P., Lanford, W.A. and Maley, N., Phys. Rev. B 45, 13387 (1992).Google Scholar
5. Luysberg, M., Hapke, P., Carius, R. and Finger, F., Philos. Mag. A 75, 31 (1997).Google Scholar
6. Finger, F., Prasad, K., Dubail, S., Shah, A., Tang, X.-M., Weber, J. and Beyer, W., Mat. Res. Soc. Symp. Proc. 219, 383 (1991).Google Scholar
7. Beyer, W., Physica B 170, 105 (1991).Google Scholar
8. Beyer, W., in: Tetrahedrally-Bonded Amorphous Semiconductors, eds. Adler, S.D. and Fritzsche, H. (Plenum, New York, 1985), p. 129.Google Scholar
9. Beyer, W. and Zastrow, U., Mat. Res. Soc. Symp. Proc. 297, 285 (1993).Google Scholar
10. Beyer, W., J. Non-Cryst. Solids 97–98, 1027 (1987).Google Scholar
11. Beyer, W. and Wagner, H., Mat. Res. Soc. Symp. Proc. 336, 323 (1994).Google Scholar
12. Beyer, W., J. Non-Cryst. Solids 198–200, 40 (1996).Google Scholar
13. Wagner, H. and Beyer, W., Solid State Commun. 48, 585 (1983).Google Scholar
14. Huber, K.P., in: AIP Handbook of Physics, ed. Grey, D.E. (McGraw Hill, New York, 1972) eh. 7, p. 168.Google Scholar