Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-02T13:49:42.324Z Has data issue: false hasContentIssue false

Discovery of Long Range Order in Thin (2-20 NM) SiO2 Films by Ion Beam Analysis

Published online by Cambridge University Press:  10 February 2011

N. Herbots
Affiliation:
Dept. of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504
V. Atluri
Affiliation:
Dept. of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504 Intel Corporation, Chandler, AZ 85226
Q. B. Hurst
Affiliation:
Dept. of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504
J. M. Shaw
Affiliation:
Dept. of Chem., Bio and Materials Engineering, Arizona State University, Tempe, AZ 85287 Intel Corporation, Chandler, AZ 85226
S. Banerjee
Affiliation:
Dept. of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504
J. D. Bradley
Affiliation:
Dept. of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504
R. J. Culbertson
Affiliation:
Dept. of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504
D. J. Smith
Affiliation:
Dept. of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504
Get access

Abstract

SiO2 films, 2-20 nm thick, were grown on passivated, ordered Si(100) to correlate electrical properties and oxidation rates with processing for ultra-thin gate oxides. Ordered Si(l 00) (1 × 1) stable in ambient air was obtained at room temperature by wet chemical cleaning. The thickest oxides were grown by Rapid Thermal Oxidation at 850°C, the thinnest at room temperature. O was detected by Ion Beam Analysis (IBA) using a combination of ion channeling with the 3.05 MeV 16O(α,α)16O nuclear resonance. It then becomes possible to measure order in thin SiO2 by comparing the total amount of O from rotating random spectra to disordered O detected by ion channeling, and detect the alignment of O with the atoms in Si(100)

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Burrows, V. A., Chabal, Y.J., Higashi, G. S. et al., Appl. Phys. Lett. 53, 993 (1988).Google Scholar
2. Trucks, G. W., Raghavachari, K., Higashi, G. S., Chabal, Y. J., Phys. Rev. Lett. 65, 504 (1990).Google Scholar
3. Fenner, D. B., Biegelsen, D. K., and Bringans, R. D., J. Appl. Phys. 66, 419 (1989).Google Scholar
4. Grunthaner, P. J., Grunthaner, F. J., Fathauer, R. W., Lin, T. L., Hecht, M. H., Bell, L. D., Kaiser, W.J., Schowengerdt, F. D., and Mazur, J. H., Thin Solid Films 183, 197 (1989).Google Scholar
5. Copel, M., Culbertson, R. J., and Tromp, R. M., Appl. Phys. Lett. 65, 2344 (1995).Google Scholar
6. Atluri, V., Herbots, N., Baghvat, S., Whaley, S., Nucl. Instr. Methods B118, 144 (1996).Google Scholar
7. Atluri, V., Herbots, N., Dagel, D., Jacobsson, H., Johnson, M., Carpio, R., B. Mater. Res. Soc. Symp. Proc. Vol. 477, Science and Technology of Semiconductor Surface Preparation, Eds. Higashi, G.S., Hirose, M., Raghavan, S., Verhaeverbeke, S. pp. 281293 (1997).Google Scholar
8. Herbots, N., Atluri, V., Banerjee, S., Bradley, J. D., Xiang, J., Hurst, Q., ASU Technology Disclosure AS098-15, US Patent (1997).Google Scholar
9. Ourmazd, A., Taylor, D. W., Rentschler, J. A., and Beuk, J., Phys. Rev. Lett. 59, 213 (1987)Google Scholar
10. Shaw, J. M., M.S. Thesis, Arizona State University, to be published, (1999).Google Scholar
11. Herbots, N., Atluril, V., Banerjee, S., Hurst, Q.B., Bradley, J. D., Hyatt, J.N., Culbertson, R. J., Smith, D. J., Xiang, J., XIIth Conference on the Physics and Chemistry of Semiconductor Interfaces, January 18-23, Salt Lake City, Utah (1998).Google Scholar
12. Hurst, Q. B., Ph.D. Thesis, Arizona State University, to be published, (1999).Google Scholar
13. Culbertson, R. J., Feldman, L. C., Silverman, P. J., and Haight, R., Vac. Sci. Tech. 20, 868 (1982).Google Scholar
14. Banerjee, S., M.S. Thesis, Arizona State University, to be published (1998).Google Scholar
15. Feldman, L. C., Mayer, J. W. and Picraux, S. T., Materials Analysis by Ion Channeling: Submicron Crystallography (Academic Press, New York, 1982). See also. L. C. Feldman, I. Stensgaard, P. J. Silverman, and T. E. Jackman, Proc. Int. Conf. on the Physics of SiO2 and its Interfaces, ed. A Pentelides (Peragamon, New York, 1978) p. 344.Google Scholar
16. Stedile, F. C., Baumvol, I. J. R., Oppenheim, I. F., Trimaille, I., Ganem, J.-J., Rigo, S., Proc. of the Twelfth Int. Conf. on Ion Beam Analysis, ed. Culbertson, R. J. (North-Holland, 1996).Google Scholar
17. Bradley, J.D., Ph.D. Thesis, Arizona State University, to be published, (2000).Google Scholar
18. Culbertson, R.J., Kuk, Y., and Feldman, L.C., Surf. Sci. 167, 127 (1986).Google Scholar
19. Jackman, T. E., MacDonald, J. R., Feldman, L. C., Silverman, P. J. and Stensgaard, I., Surf. Sci., 100, 35 (1980).Google Scholar
20. Himpsel, F. J., McFeely, F. R., Taled-Ibrahimi, A., Yarmoff, J. A. and Hollinger, G., Phys. Rev. B 38, 6084 (1988).Google Scholar
21. Lenosky, T. J., Chizmeshya, A., Sankey, O., and Demkov, A., to be published. Google Scholar