Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-03T13:22:25.277Z Has data issue: false hasContentIssue false

Does the Subsurface Superheating Effect Really Exist?

Published online by Cambridge University Press:  15 February 2011

Valentin Craciun
Affiliation:
Laser Department, National Institute for Laser, Plasma and Radiation Physics, Bucharest VMagurele, PO Box MG-36, RO-76900, Romania; craciv@roifa.ifa.ro
Doina Craciun
Affiliation:
Laser Department, National Institute for Laser, Plasma and Radiation Physics, Bucharest VMagurele, PO Box MG-36, RO-76900, Romania; craciv@roifa.ifa.ro
Get access

Abstract

The existence inside targets during pulsed laser ablation of a sub-surface superheating effect (SSSH) has been predicted by numerical temperature estimations. The experimental evidence has been so far only indirect, based on the modification of the surface morphology caused by the explosive volume boiling induced by the SSSH effect. However, round-shaped micrometer-sized cavities formed by gas release due to volume boiling have been found on several target materials even when the temperature estimations did not predict any SSSH effect. Although the SSSH effect could exist under certain conditions, it seems that it is not a prerequisite for explosive volume boiling which is the actual mechanism responsible for droplets emission. Volume boiling could occur whenever a thick liquid layer, whose temperature is much higher than the equilibrium boiling value is formed and lasts for several tens of nanoseconds on the target surface, a situation usually found when the laser wavelength is poorly absorbed by the target material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dabby, F. W. and Paek, U.-C., IEEE J. Quant. Electr. 8, 106 (1972).Google Scholar
2. Gagliano, F. P. and Paek, U.-C., Appl. Opt. 13, 274 (1974).Google Scholar
3. Bhattacharya, D., Singh, R. K., and Holloway, P. H., J. Appl. Phys. 70, 5433 (1991).Google Scholar
4. Mazhukin, V. I., Smurov, I., and Flamant, G., J. Appl. Phys. 78, 1259 (1995).Google Scholar
5. Craciun, V., Amirhaghi, S., Craciun, D., Elders, J., Gardeniers, J. G. E., and Boyd, I. W., Appl. Surf. Sci. 86, 99 (1995).Google Scholar
6. Craciun, V., Craciun, D., Bunescu, M. C., Dabu, R., and Boyd, I. W., Appl. Surf. Sci. 109/110, 354 (1997).Google Scholar
7. Guillot-Noel, O., Roman, R.Gomez-San, Perriere, J., Hermann, J., Craciun, V., BoulmerLeborgne, C., Barboux, P., J. Appl. Phys. 80, 1803 (1996).Google Scholar
8. Miotello, A. and Kelly, R., Appl. Phys. Lett. 67, 3535 (1995).Google Scholar
9. Kelly, R. and Miotello, A., Appl. Surf. Sci. 96–98, 205 (1996).Google Scholar
10. Bennett, T. D., Grigoropoulos, C. P., and Krajnovich, D. J., J. Appl. Phys. 77, 849 (1995).Google Scholar
11. Allcock, G., Dyer, P. E., Elliner, G., and Snelling, H. V., J. Appl. Phys. 78, 7295 (1995).Google Scholar
12. Zherikhin, A., Bagratashvili, V., Burimov, V., Sobol, E., Shubnii, Gh., and Sviridov, A., Physica C 198, 341 (1992).Google Scholar
13. Singh, R. K., Fitz-Gerald, J. M., Nucl. Instr. and Meth. B 121, 363 (1997).Google Scholar
14. Landolt-Bornstein New Series, Volume 17b, Ed. Madelung, O. (Springer Verlag, Berlin, Heidelberg, New York, 1982).Google Scholar
15. Takasuka, E., Tokizaki, E., Terashima, K., and Kimura, S., J. Appl. Phys. 82, 2590 (1997).Google Scholar
16. Niedrig, R. and Bostanjoglo, O., J. Appl. Phys. 81, 480 (1997).Google Scholar
17. Zhang, X., Chu, S. S., Ho, J. R., Grigoropoulos, C. P., Appl. Phys. A64, 545 (1997).Google Scholar
18. Dat, R., Auciello, O., Lichtenwalner, D. J., and Kingon, A. I., J. Mater. Res. 11, 1514 (1996).Google Scholar