Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-02T04:15:42.204Z Has data issue: false hasContentIssue false

Drift Mobility Measurements in Porous Silicon

Published online by Cambridge University Press:  10 February 2011

L. Tsybeskov
Affiliation:
Department of Electrical Engineering, University of Rochester, Rochester NY 14627
C. Peng
Affiliation:
Department of Electrical Engineering, University of Rochester, Rochester NY 14627
P. M. Fauchet
Affiliation:
Department of Electrical Engineering, University of Rochester, Rochester NY 14627
Q. Gu
Affiliation:
Department of Physics, Syracuse University, Syracuse NY 13244
E. A. Schiff
Affiliation:
Department of Physics, Syracuse University, Syracuse NY 13244
Get access

Abstract

Modulated electroluminescence (EL) measurements performed on a series of porous silicon (PSi) diodes are presented. The maximum response time of the devices scales with the square of the PSi layer thickness and inversely with the applied forward bias voltage. These scaling results indicate that the maximum response time is a carrier transit time from which a drift mobility μ of 10−4 cm2/Vs is deduced at room temperature. Time-of-flight transport measurements on PSi are in qualitative agreement with this value for μ in addition, they identify μ as the electron mobility and show that transport is dispersive, in contrast to the interpretation of the modulated EL experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990)Google Scholar
2. Cullis, A. G. and Canham, L. T., Nature 353, 335 (1991)Google Scholar
3. Proot, J. P., Delerue, C., and Allan, G., Appl. Phys. Lett. 61, 1948 (1992)Google Scholar
4. Xie, Y. H., Hybertsen, M. S., Wilson, W. L., Ipri, S. A., Carver, G. E., Brown, W. L., Dons, E., Weir, B. E., Kortan, A. R., Watson, G. P., and Liddle, A. J., Phys. Rev. B 49, 5386 (1994)Google Scholar
5. Hybertsen, M. S., Phys. Rev. Lett. 72, 1514 (1994)Google Scholar
6. Koshida, N. and Koyama, H., Nanotechnology 3, 192 (1992)Google Scholar
7. Steiner, P., Kozlowski, F., and Lang, W., Appl. Phys. Lett. 62, 2700 (1993)Google Scholar
8. Namavar, F., Maruska, H. P., and Kalkhoran, N. M., Appl. Phys. Lett. 60, 2514 (1992)Google Scholar
9. Peng, C. and Fauchet, P. M., Appl. Phys. Lett. 67, 2515 (1995)Google Scholar
10. Kressel, H. and Butler, J. K., Semiconductor Lasers and Heterojunction LEDs, Academic Press, New York, 1977, p. 73 Google Scholar
11. Peng, C., Hirschman, K. D., and Fauchet, P. M., “Carrier transport in porous silicon lightemitting devices”, J. Appl. Phys., in pressGoogle Scholar
12. Melnyk, A. R. and Pai, D. M., in Determination of Electronic and Optical Properties, edited by Rossiter, B. W. and Baetzold, R. C. (Wiley, NY, 1993), p 321 Google Scholar
13. Wang, Q., Antoniadis, H., Schiff, E. A., and Guha, S., Phys. Rev. B 47, 9435 (1993)Google Scholar
14. Tsybeskov, L., Duttagupta, S. P., Hirschman, K. D. and Fauchet, P. M., Appl. Phys. Lett. 68, 2058 (1996)Google Scholar
15. Fejfar, A., Pelant, I., Sipek, E., Kocka, J., Juska, G., Matsumoto, T., and Kanemitsu, Y., Appl. Phys. Lett. 66, 1098 (1995)Google Scholar
16. Hlinomaz, P. et al, Appl. Phys. Lett. 64, 3118 (1994)Google Scholar