Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-01T08:51:43.402Z Has data issue: false hasContentIssue false

Effects of Cu and Si Dopants on Electromigration Mass Transport in Al Interconnects for VLSI

Published online by Cambridge University Press:  15 February 2011

C. H. Lee
Affiliation:
Motorola, 5005 E. McDowell Rd, Phoenix, AZ 85008
P. L. Fejes
Affiliation:
Motorola, 5005 E. McDowell Rd, Phoenix, AZ 85008
B. R. York
Affiliation:
IBM, 5600 Cottle Rd., San Jose, CA 95193
S. A. Elwell
Affiliation:
Motorola, 5005 E. McDowell Rd, Phoenix, AZ 85008
R. O. Carnes
Affiliation:
Motorola, 5005 E. McDowell Rd, Phoenix, AZ 85008
J. Y. Lee
Affiliation:
Motorola, 5005 E. McDowell Rd, Phoenix, AZ 85008
G. M. Grivna
Affiliation:
Motorola, 5005 E. McDowell Rd, Phoenix, AZ 85008
S. W. Bauguess
Affiliation:
Motorola, 5005 E. McDowell Rd, Phoenix, AZ 85008
M. L. Dreyer
Affiliation:
Motorola, 5005 E. McDowell Rd, Phoenix, AZ 85008
S. R. Edwards
Affiliation:
Motorola, 5005 E. McDowell Rd, Phoenix, AZ 85008
Get access

Abstract

We have investigated the effects of Cu and Si dopants on electromigration mass transport in Al interconnects for VLSI technology. Four Al alloys with different Cu and Si dopant concentrations (AI-1.5%Cu, AI-1.5%Cu-I.5%Si, AI-0.5%Cu-I.0%Si, and AI-I.O%Cu-I.0%Si) were sputter deposited onto Si substrates covered with 0.55 pRm of Si02 (tetraethylorthosilicate). All metal films were deposited using an MRC903 sputter deposition system to a thickness of 6800Å. Deposition parameters were held constant for each metallurgy, with a base pressure of 7x 10−2 torr, deposition pressure of 102 torr, forward power of 7 Kwatts, and substrate bias of 125 volts. Test structures designed according to National Institute of Standards design guidelines were fabricated in each metallurgy using conventional photolithography and reactive ion etching methods for line widths of 1.0, 1.8, 3.0, 5.0 and 10.0 μm. Accelerated test conditions of T=200°C and DC current density of 2x106 A/cm−2 were used. The results show that electromigration resistance increases with increasing Cu content and decreases as Si content increases. These results are explained in terms of precipitate, grain size distribution, orientation and stress by Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD). Our results provide a general guideline relating Cu and Si dopant concentrations, film microstructure and the intrinsic reliability of the metallization system.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ames, I., d'Heurle, F.M. and Horstmann, R.E., IBM J. Res. Dev., v14, p461, 1970.Google Scholar
[2] Merchant, P. and Cass, T., Proc. 22nd IRPS, p190, 1984 Google Scholar
[3] Domenicucci, A., Vook, R.W., J.Vac.Sci.Technol. (1991), 581585.Google Scholar
[4] Gardner, D.S., Longworth, H.P., Flinn, P.A., VMIC Conf (1990), 243253.Google Scholar
[5] Dirks, A.G., Augur, R.A., Veirman, A.E.M. De, Thin Solid Films, v246 (1994), 164171.Google Scholar
[6] Kwok, T., Chan, K.K., Simko, J., J.Vac.Sci.Technol. A, V9,No.4 (1991), 25232526.Google Scholar
[7] Akiya, M., Nakamura, H., Arita, Y., J. Electrochem. Soc., V137,No.7, (1990), 22522256.Google Scholar
[8] Rodbell, K.P., Knorr, D.B., J.D.Mis, J. of Electronic Mat., V22, No.6, (1993), p59 7 -60 6.Google Scholar
[9] Cho, J., Thompson, C.V., J. of Electronic Materials, V19, No.11, (1990), 12071212 Google Scholar
[10] Campbell, A.N., Mikawa, R.E., Knorr, D.B., V22, No.6, (1993), 589596.Google Scholar
[11] Baerg, W., Wu, K., Davies, P., Dao, G., Fraser, D., IEEE-IRPS, (1990), 119123.Google Scholar
[12] Babcock, S.E. Balluffi, R.W., Acta Metall. V37,No.9,(1989), 23672376.Google Scholar
[13] Bauer, C.L., Tang, P.F., Defect and Diffusion Forum, V.66–69, (1989), 11431152.Google Scholar
[14] Ho, P.S., Moske, M. A., C.K.Hu, SPIE V1805, Submicron Metallization (1992), 116129.Google Scholar
[15] Besser, P.R., Ph.D. Dissertation, Stanford University, (1993)Google Scholar
[16] Clarke, A.P., Saimoto, S., Ho, P., AIP Conference Proceedings 305, (1994), 126136.Google Scholar
[17] Baldini, G.L., Scorzoni, A., IEEE-Trans on Electron Devices, V38, No.3, (1991), 469475.Google Scholar
[18] Matsunaga, N., et. al., 1992 Symp. on VLSI Technology Digest of Technical Papers, 7677. Google Scholar
[19] Besser, P.R., et al, MRS Symp. Proc. V309, (1993), 255260.Google Scholar
[20] Shute, C.J., Cohen, J.B., J. Mater. Res., Vol.6, No.5, (1991), 950956.Google Scholar
[21] Chew, H.Z., et al, SPIE V1805, Submicron Metallization (1992), 164168.Google Scholar
[22] Anderson, S.G.H., et. al., SPIE V1805, Multilevel Interconnect (1993), 130137.Google Scholar
[23] Anderson, S.G.H., et. al., MRS Symp. Proc. V309, (1993), 261268.Google Scholar
[24] Kardiawarman, et.al., SPIE proceedings, 1995.Google Scholar
[25] Hu, C-K, Ho, P.S., Small, M.B., Kelleher, K., MRS Proc. v225, (1991) 99105 Google Scholar
[26] Rodbell, K.P., DeHaven, P.W. and Mis, J.D., MRS Proc. v225, [1991] 9197 Google Scholar
[27] Cullity, B.D., “Elements of X-ray Diffraction” Addison Wesley.Google Scholar
[28] Noyan, I.C. and Cohen, J.B., Residual Stress, Measurement by Diffraction and Interpretation, Springer-Verlag, New York 1987.Google Scholar
[29] Noyan, I.C., Huang, T.C., and York, B.R., Critical Reviews in Solid State and Materials Science, 20(2): 125177 (1995)Google Scholar