Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-01T15:29:17.563Z Has data issue: false hasContentIssue false

Electrical Characterization Of Defects Introduced During Plasma-Based Processing Of GaAs

Published online by Cambridge University Press:  15 February 2011

H. Nordhoff
Affiliation:
Physics Department, University of Pretoria, Pretoria 0002, South Africa
G. M. Crean
Affiliation:
National Microelectronics Research Centre (NMRC), Lee Maltings, Prospect Row, Cork, Ireland
Get access

Abstract

DLTS revealed that each plasma type (He and SiCl4) introduced its own characteristic set of defects. Some of the defects created during He processing and one defect introduced by SiCl4 etching had identical electronic properties to those introduced during high energy (MeV) He ion bombardment. SiC14etching introduced only two prominent defects, one of which is metastable with electronic properties similar to a metastable defect previously reported in high and low energy He-ion bombardment of Si-doped GaAs. IV measurements demonstrated that the characteristics of SBDs fabricated on He-ion processed surfaces were very poor compared to those of control diodes (diodes fabricated on surfaces cleaned by conventional wet etching). In contrast, the properties of SBDs fabricated on SiCl4 etched surfaces were as good as, and in some cases superior to, those of control diodes. SBDs fabricated on annealed (at 450°C for 30 minutes) He-processed samples exhibited improved but still poor rectification. In contrast, SBDs fabricated on annealed SiCl4 etched surfaces had virtually the same characteristics as those fabricated on unannealed SiCl4 etched samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Fonash, S. J., J. Electrochem. Soc. 137, p. 3885 (1990).Google Scholar
[2] Johnson, M. B., McGill, T. C. and Paulter, N. G., Appl. Phys. Lett. 54, p. 2424 (1989).Google Scholar
[3] Ashok, S., Kräutle, H. and Beneking, J., Appl. Phys. Lett. 45, p. 431 (1984).Google Scholar
[4] Wang, Y. G. and Ashok, S., J. Appl. Phys. 65, p. 2371 (1989).Google Scholar
[5] Auret, F. D., Goodman, S. A. and Myburg, G., unpublished.Google Scholar
[6] Lang, D. V., J. Appl. Phys. 45, 3014 (1974).Google Scholar
[7] Grusell, E., Berg, S. and Andersson, L. P., J. Electrochem. Soc. 127, p. 1573 (1980).Google Scholar
[8] Vaseashta, A., Elshabini-Riadanf, A. and Burton, L. C., Materials Science and Engineering B 9, p. 489 (1991).Google Scholar
[9] Auret, F. D., Goodman, S. A., Myburg, G. and Meyer, W. E., J. Vac. Sci. Technol. B 10, p. 2366 (1992).Google Scholar
[10] Bauza, D. and Pananakakis, G., J. Appl. Phys. 69, p. 3357 (1991).Google Scholar
[11] Auret, F. D. and Goodman, S. A., Appl. Phys. Lett. 68, p. 3275 (1996).Google Scholar
[12] Pearton, S. J., Chakrabarti, U. K., Hobson, W. S. and Kinsella, A. P., J. Vac. Sci. Technol. B 8, p. 607 (1990).Google Scholar
[13] Meyyappan, M., Lee, H. S., Eckart, D., Namaroff, M. and Sasserath, J., J. Vac. Sci. Technol. B 10, p. 1215 (1992).Google Scholar
[14] Lootens, D., Daele, P. Van and Demeester, P., J. Appl. Phys. 70, p. 221 (1991).Google Scholar
[15] Zohta, Y. and Watanabe, M. O., J. Appl. Phys. 53, p. 1809 (1982).Google Scholar
[16] Pearton, S. J., Chakrabarti, U. K. and Perley, A. P., J. Appl. Phys. 68, p. 2761 (1990).Google Scholar
[17] Ziebro, B., Hemsky, J. W. and Look, D. C., J. Appl. Phys. 72, p. 78 (1992).Google Scholar
[18] Svensson, B. G., Mohadjeri, B., Hallen, A., Svensson, J. H. and Corbett, J. W., Phys. Rev B 43, p. 2292 (1991).Google Scholar
[19] Fonash, S. J., Ashok, S. and Singh, R., Appl. Phys. Lett. 39, p. 423 (1981).Google Scholar
[20] Auret, F. D., Erasmus, R. M., Goodman, S. A. and Meyer, W. E., Phys. Rev. B 51, p. 17 521 (1995).Google Scholar
[21] Auret, F. D., Goodman, S. A., Erasmus, R. M., Meyer, W. E. and Myburg, G., Nucl. Instr. and Meth. in Phys. Res. B 106, p. 323 (1995).Google Scholar
[22] Goodman, S. A., Auret, F. D. and Meyer, W. E., Nucl. Instr. and Meth. in Phys. Res. B 90, p. 349 (1993).Google Scholar
[23] Pons, D. and C.Bourgoin, J., J. Phys. C: Solid State Phys. 18, p. 3839 (1985).Google Scholar
[24] Goodman, S. A., Auret, F. D., Hayes, M., Myburg, G. and Meyer, W. E., Phys. Stat. Sol. (a) 140, p 381 (1993).Google Scholar