Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-13T22:32:47.788Z Has data issue: false hasContentIssue false

Electrical Properties of Heavily Be-doped GaAs grown by Molecular Beam Epitaxy

Published online by Cambridge University Press:  25 February 2011

H. Shibata
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba-shi, 305 Japan.
Y. Makita
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba-shi, 305 Japan.
A. Yamada
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba-shi, 305 Japan.
N. Ohnishi
Affiliation:
Informex Incorporated Limited, 3-15-10 Hiyoshi, Kohoku-ku, Yokohama-shi, 225 Japan.
M. Mori
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba-shi, 305 Japan.
Y. Nakayama
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba-shi, 305 Japan.
A. C. Beye
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba-shi, 305 Japan.
K. M. Mayer
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba-shi, 305 Japan.
T. Takahashi
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba-shi, 305 Japan.
Y. Sugiyama
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba-shi, 305 Japan.
M. Tacano
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba-shi, 305 Japan.
K. Ishituka
Affiliation:
Nippon Institute of Technology, 4-1 Gakuendai, Miyashiro-machi, Saitama-ken, 345 Japan.
T. Matsumori
Affiliation:
Tokai University, 1117 Kitakaname, Hiratsuka-shi, 259-12 Japan.
Get access

Abstract

Electrical properties of heavily Be-doped GaAs grown by molecular beam epitaxy were investigated systematically in a wide range of Be-concentration from 1× 1014 up to 2× 1020 cm-3 by using yan der Pauw technique. Probable carrier scattering mechanisms observed in this work are discussed by taking into account the radiative mechanisms of several new photoluminescence emissions previously observed in the band-edge-emission region of the samples. All samples were checked their electrical properties first at room-temperature. Five selected samples out of them were measured from 10° K up to room-temperature. Samples having the carrier concentration from 1014 to 1018 cm3 presented typical semiconductor-like conduction with finite carrier excitation energy. For samples having carrier concentration 7× 1016 cm -3, the conduction mechanism at high temperature region above 30β K was dominated by holes thermally excited into valence band. At low temperature region below 30° K . it was dominated by holes hopping from neutral to ionized acceptors with the assistance of phonons. Hole mobilities of samples having the carrier concentration from 1017 to 1018 cm-3 showed an anomalous behavior in the low temperature region, which suggests the presence of a new type of carrier scattering mechanism. A radiative center denoted by lg-gl observed in this concentration region will be a candidate scattering center to explain these electrical behaviors. Samples having the carrier concentration larger than 1019 cm-3 demonstrated typically metallic electric conduction not owing to thermally excited carriers, which means that an impurity band is formed but merged with valence band. The density of state of this combined valence band mixed with impurity band can be supposed to reflect carrier concentration dependence of the PL emission bands observed in this region, i.e. [g-g]α , [g-g]β and [g-g]γ .

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ashen, D. J., Dean, P. J., Hurle, D. T., Mullin, J. B., White, A. M. and Green, P. D., J. Phys. Chem. Solids 36 1041 (1975).Google Scholar
2 Jiang, D. S., Makita, Y., Ploog, K. and Queisser, H. J., J. Appl. Phys. 53, 999 (1982).Google Scholar
3 Burstein, E., Phys. Rev. 83, 632 (1954).Google Scholar
4 Moss, T. S., Proc. Phys. Soc. London. B67, 775 (1954).Google Scholar
5 Pankov, J. I., J. Phys. Soc. Japan 21, Suppliment 298 (1966).Google Scholar
6 Makita, Y., Nomura, T., Yokota, M., Matsumori, T., Izumi, T., Takeuchi, Y. and Kudo, R., Appl. Phys. Lett. 47, 623 (1985).Google Scholar
7 Makita, Y., Takeuchi, Y., Ohnishi, N., Nomura, T., Kudo, K., Tanaka, H., Lee, H. C., Mori, M. and Mitsuhashi, Y., Appl. Phys. Lett. 49, 1184 (1986).Google Scholar
8 Makita, Y., Mori, M., Ohnishi, N., Phelan, P., Taguchi, T., Sugiyama, Y. and Takano, M., Mat. Res. Soc. Symp. Proc. 102, 175 (1988).Google Scholar
9 Ohnishi, N., Makita, Y., Shibata, H., Beye, A. C., Yamada, A. and Mori, M., to be published in Proc. of Mat. Res. Soc. Symp. 1989 Spring Meeting, San Diego.Google Scholar
10 Shibata, H., Makita, Y., Mori, M., Takahashi, T., Yamada, A., Mayer, K. M., Ohnishi, N. and Beye, A. C., to be published in Proc. of the 16th International Symp. on GaAs and Related Compounds, 1989, Karuizawa .Google Scholar
11 Nomura, T., Makita, Y., Irie, K., Ohnishi, N., Kudo, K., Tanaka, H. and Mitsuhashi, Y., Appl. Phys. Lett. 48, 1745 (1986).Google Scholar
12 Ilegems, M., in The Technology and Physics of Molecular Beam Epitaxy, edited by Parker, E. H. C. (Plenum Press, New York, 1985) p.83.Google Scholar
13 Ilegems, M., J. Appl. Phys. 48, 1278 (1977).Google Scholar
14 Ploog, K., Fisher, A. and Kunzel, K., J. Electrochem. Soc. 128, 400 (1981).Google Scholar
15 Scott, G. B., Duggan, G., Dawson, P., Weimann, G., J. Appl. Phys. 52, 6888 (1981).Google Scholar
16 Duhamel, N., Henoc, P., Alexandre, F. and Rao, E. V. K., Appl. Phys. Lett. 39, 49 (1981).Google Scholar
17 Bhattacharya, P. K., Buhlmann, H. J., Ilegems, M. and Staehli, J. L., J. Appl. Phys. 53, 6391 (1982).Google Scholar
18 Wiley, J. D., in Semiconductor and Semimetals, Vol.10, edited by Willardson, R. K. and Beer, A. C. (Academic Press, New York, 1975) p.91.Google Scholar
19 Look, D. C., in Electrical Characterization of GaAs Materials and Devices (John Wiley & Sons,1989).Google Scholar
20 Ohnishi, N., Makita, Y., Mori, M., Irie, K, Takeuchi, Y. and Shigetomi, S., J. Appl. Phys. 62, 1833 (1987).Google Scholar
21 Ermanis, F. and Wolfstein, K., J. Appl. Phys. 37, 1963 (1966).Google Scholar
22 Caspy, H. C., Ermanis, F. and Wolfstein, K. B., J. Appl. Phys. 40, 2945 (1969).Google Scholar
23 Stillman, G. E. and Wolfe, C. M., Thin Solid Films. 31, 69 (1976).Google Scholar
24 Haufe, A., Schwabe, R., Fieseler, H. and Ilegems, M., J. Phys. C : Solid State Phys. 21, 2951 (1988).Google Scholar