Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-18T13:56:59.863Z Has data issue: false hasContentIssue false

Electron Spin Resonance and Electronic Conductivity in Moderately Doped n-type Microcrystalline Silicon as a Probe for the Density of Gap States

Published online by Cambridge University Press:  01 February 2011

T. Dylla
Affiliation:
Institut für Photovoltaik, Forschungszentrum Jülich, 52425 Jülich, Germany
R. Carius
Affiliation:
Institut für Photovoltaik, Forschungszentrum Jülich, 52425 Jülich, Germany
F. Finger
Affiliation:
Institut für Photovoltaik, Forschungszentrum Jülich, 52425 Jülich, Germany
Get access

Abstract

Electron spin resonance accompanied by conductivity measurements in n-type microcrystalline silicon with different doping concentrations and different structure compositions has been applied for the study of the density of gap states and the influence of these states on charge carrier density. We studied doping concentrations close to the defect density where the doping induced Fermi level (EF) shift is determined by compensation of gap states. We found a correlation between the EF shift, the intrinsic defect density and structural changes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Keppner, H., Meier, J., Torres, P., Fischer, D., and Shah, A., Appl. Phys. A 69, 169 (1999).Google Scholar
2. Yamamoto, K., Yoshimi, M., Tawada, Y., Okamoto, Y., Nakajima, A. and Igari, S., Appl. Phys. A 69, 179 (1999).10.1007/s003390050988Google Scholar
3. Vetterl, O., Carius, R., Houben, L., Scholten, C., Luysberg, M., Lambertz, A., Finger, F., and Wagner, H., Mater. Res. Soc. Symp. Proc. 609, A15.2 (2000).Google Scholar
4. Nasuno, Y., Kondo, M. and Matsuda, A., Mater. Res. Soc. Symp. 609, A15.5 (2000).Google Scholar
5. Wyrsch, N., Feitknecht, L., Droz, C., Torres, P., Shah, A., Poruba, A., and Vanecek, M., J. Non-Cryst. Solids 266-269, 1099 (2000).10.1016/S0022-3093(99)00910-2Google Scholar
6. Müller, J., Finger, F., Carius, R. and Wagner, H., Phys.Rev. B 60, 11666 (1999).and references there-in.10.1103/PhysRevB.60.11666Google Scholar
7. Kondo, M., Yamasaki, S., and Matsuda, A., J. Non-Crystal. Solids 266-269, 544 (2000).10.1016/S0022-3093(99)00870-4Google Scholar
8. Kanschat, P., Mell, H., Lips, K., and Fuhs, W., Mater. Res. Soc. Symp. Proc. 609, A27.3 (2000).Google Scholar
9. Neto, A.L. Baia, Lambertz, A., Carius, R., Finger, F., Phys. Stat. Sol. A, 186, No. 1 R4-R6 (2001)Google Scholar
10. Finger, F., Müller, J., Malten, C., Carius, R., Wagner, H., J. Non-Crystal. Solids 266-269, 511518 (2000).Google Scholar
11. Houben, L., Scholten, C., Lysberg, M., Vetterl, O., Finger, F. and Carius, R., Journal of Non-Crystalline Solids, 299-302, 1189 (2002).Google Scholar
12. Houben, L., Luysberg, M., Hapke, P., Carius, R., Finger, F. and Wagner, H., Phil.Mag. A 77, 1447 (1998).10.1080/01418619808214262Google Scholar
13. Müller, J., Electron Spin Resonance Studies on Microcrystalline Semiconductors, Berichte des Forschungszentrums Jülich 3615, ISSN 0944-2952 (1998).Google Scholar
14. Carius, R., Finger, F., Backhausen, U., Luysberg, M., Hapke, P., Houben, L., Otte, M., Overhof, H., Mater. Res. Soc. Symp. Proc. 467 (1997)Google Scholar