Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-02T15:37:27.256Z Has data issue: false hasContentIssue false

Er3+ Photoluminescence Properties of Erbium-doped Si/SiO2 Superlattices with sub-nm Thin Si Layers

Published online by Cambridge University Press:  17 March 2011

Yong Ho Ha
Affiliation:
Department of Chemistry, School of Molecular Science, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Kusung-dong, Yusung-Gu, Taejon, KOREA
Sehun Kim
Affiliation:
Department of Chemistry, School of Molecular Science, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Kusung-dong, Yusung-Gu, Taejon, KOREA
Dae Won Moon
Affiliation:
Nano Surface Group, Korea Research Institute of Standards and Science (KRISS), Doryong-dong 1, Taejon 305-606, KOREA
Ji-Hong Jhe
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Kusung-dong, Yusung-Gu, Taejon, KOREA
Jung H. Shin
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Kusung-dong, Yusung-Gu, Taejon, KOREA
Get access

Abstract

The effect of varying the Si layer thickness on the Er3+ photoluminescence properties of Er-doped Si/SiO2 superlattice is investigated. We find that as the Si layer thickness is reduced from 3.6 nm down to a monolayer of Si, the Er3+ luminescence intensity increases by over an order of magnitude. Temperature dependence of the Er3+ luminescence intensity and time-resolved measurement of Er3+ luminescence intensity identify the increase in the excitation rate as the likely cause for such an increase, and underscore the importance of the Si/SiO2 interface in determining the Er3+ luminescence properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ennen, H., Schneider, J., Pomrenke, G., and Axmann, A., Appl. Phys. Lett. 43, 943 (1983).Google Scholar
2. Kik, P. G., Dood, M. J. A. de, Kikoin, K., and Polman, A., Appl. Phys. Lett. 70 1721 (1997).Google Scholar
3. Priolo, F., Franzò, G., Coffa, S., and Carnera, A., Phys. Rev. B 57 4443 (1998).Google Scholar
4. Palm, J., Gan, F., Zheng, B., Michel, J., and Kimerling, L. C., Phys. Rev. B 54 17603 (1996).Google Scholar
5 Jung. Shin, H., Lee, W-H and Han, H-S., Appl. Phys. Lett.s 74 1573 (1999).Google Scholar
6 Shin, Jung. H., Jhe, J-H., Seo, S-Y., Ha, Y. H., and Moon, D. W., Appl. Phys. Lett. 76 3567 (2000).Google Scholar
7 Zacharias, M., Bläsing, J., Veit, P., Tsybeskov, L., Hirschman, K., and Fauchet, P. M., Appl. Phys. Lett. 74 2614 (1999).Google Scholar
8 Favennec, P. N., L'Haridon, H., Moutonnet, D., Salvi, M., Ganneau, M., Mat. Res. Soc. Symp. Proc. 301, 181 (1993).Google Scholar
9 Seo, S-Y. and Shin, Jung H., Appl. Phys. Lett. 75 4070 (1999).Google Scholar
10 Kik, P. G., Brongersma, M. L., and Polman, A., Appl. Phys. Lett. 76 2325 (2000).Google Scholar
11 Kanemitsu, Y., Fukunishi, Y., and Kushida, T., Appl. Phys. Lett. 77 211 (2000).Google Scholar
12 Stolk, P., Ph. D. Thesis, Utrecht University, the Netherlands, 1993.Google Scholar
13 Polman, A., Hoven, G. N. van den, Custer, J. S., Shin, J. H., Serna, R., and Alkemade, P. F. A., J. Appl. Phys. 77 1256 (1995).Google Scholar
14 Shin, Jung. H., Seo, S-Y., Kim, S., and Bishop, S. G., Appl. Phys. Lett. 76 1999 (2000).Google Scholar
15 Kik, P. G. and Polman, A., J. Appl. Phys. 88 1992 (2000).Google Scholar