Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-02T10:53:50.482Z Has data issue: false hasContentIssue false

Far Infrared Spectroscopy of In0.53Ga0.47As Quantum Wells on InP(100)

Published online by Cambridge University Press:  11 February 2011

N. L. Rowell
Affiliation:
Institute for National Measurement Standardsand National Research Council, Ottawa, Canada K1A 0R6
D. J. Lockwood
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, Canada K1A 0R6
P. J. Poole
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, Canada K1A 0R6
G. Yu
Affiliation:
Institute for National Measurement Standardsand National Research Council, Ottawa, Canada K1A 0R6
Get access

Abstract

Polarized far infrared reflectance was measured at oblique incidence for In0.53Ga0.47As / InP multiple quantum wells grown by chemical beam epitaxy on InP(100) wafers. Both the well thickness (0.25 - 20 nm) and number of periods (10 - 40) were varied. The reflectance spectra contained sharp Berreman modes at the frequencies of the transverse (TO) and longitudinal (LO) optical phonons. The contributions of the individual phonons were resolved with the model fits. Interface layer phonon modes were observed with intensity increasing with number of wells. The interface layers were 0.6 nm thick and of different composition to adjoining wells consistent with cross-sectional scanning tunneling microscope results on the same samples. The variation due to phonon confinement of the InAs- and GaAs-like LO and TO phonon frequencies was obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shin, H. K., Lockwood, D. J., Lacelle, C., and Poole, P. J., J. Appl. Phys. 88, 6423 (2000).Google Scholar
2. Chen, H., McKay, H. A., Feenstra, R. M., Aers, G. C., Poole, P. J., Williams, R. L., Charbonneau, S., Piva, P. G., Simpson, T. W., and Mitchell, I. V., J. Appl. Phys. 89, 4815 (2001).Google Scholar
3. Brodsky, M. H. and Lucovsky, G., Phys. Rev. Lett. 21, 990 (1968).Google Scholar
4. Groenen, J., Landa, G., Carles, R., Pizani, P. S., and Gendry, M., J. Appl. Phys. 82, 803 (1997).Google Scholar
5. Yu, G., Rowell, N. L., Lockwood, D. J., and Poole, P. J., App. Phys. Lett. 81, 2175 (2002).Google Scholar
6. Dumelow, T. and Tilley, D. R., J. Opt. Soc. Am. A 10, 633 (1993).Google Scholar
7. Milekhin, A., Yanovskii, Yu., Preobrazhenskii, V., Semyagin, B., Pusep, Yu., and Galzerani, J. C., Physica E 2, 368 (1998).Google Scholar
8. Berreman, D. W., Phys. Rev. 130, 2193 (1963).Google Scholar
9. Leibiger, G., Gottschalch, V., and Schubert, M., J. Appl. Phys. 90, 5951 (2001).Google Scholar
10. Mowbray, D. J., Hayes, W., Taylor, L. L., and Bass, S. J., Semicond. Sci. Technol. 5, 83 (1990).Google Scholar
11. McKay, H. A., Feenstra, R. M., Poole, P. J., and Aers, G. C., J. Crystal Growth (in press 2003).Google Scholar
12. Lockwood, D. J., private communication 2002.Google Scholar
13. Rowell, N. L. and Wang, E. A., Applied Optics 35, 2927 (1996).Google Scholar
14. Gervais, F. and Piriou, B., J. Phys. C.: Solid State Phys. 7, 2374 (1974).Google Scholar
15. Lowndes, R. P., Phys. Rev. B 1, 2754 (1970).Google Scholar
16. Groenen, J., Carles, R., Landa, G., Guerret-Piécourt, C., Fontaine, C., and Gendry, M., Phys. Rev. B 58, 10452 (1998).Google Scholar
17. Carles, R., Saint-Cricq, N., Renucci, J. B., Renucci, M. A., and Zwick, A., Phys. Rev. B 22, 4804 (1980).Google Scholar
18. Barker, A. S. Jr, Merz, J. L., and Gossard, A. C., Phys. Rev. B 17, 3181 (1978).Google Scholar