Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-10-31T22:56:28.815Z Has data issue: false hasContentIssue false

Fluorescent Nanodiamond – A Novel Nanomaterial for In Vivo Applications

Published online by Cambridge University Press:  08 July 2011

Nitin Mohan
Affiliation:
Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan Taiwan International Graduate Program, Academia Sinica, Taipei 106, Taiwan
Bailin Zhang
Affiliation:
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
Cheng-Chun Chang
Affiliation:
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
Liling Yang
Affiliation:
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
Chao-Sheng Chen
Affiliation:
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
Chia-Yi Fang
Affiliation:
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
Hsiao-Han Hsieh
Affiliation:
Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan
Chun-Yi Cho
Affiliation:
Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan
Yi-Chun Wu
Affiliation:
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan
Jui-Hsia Weng
Affiliation:
Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 116, Taiwan
Bon-chu Chung
Affiliation:
Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 116, Taiwan
Huan-Cheng Chang*
Affiliation:
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan Taiwan International Graduate Program, Academia Sinica, Taipei 106, Taiwan Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
Get access

Abstract

Fluorescent nanodiamonds (FNDs) with a size in the range of 10 – 100 nm have been produced by ion irradiation and annealing, and isolated by differential centrifugation. Single particle spectroscopic characterization with confocal fluorescence microscopy and fluorescence correlation spectroscopy indicates that they are photostable and useful as an alternative to far-red fluorescent proteins for bioimaging applications. We demonstrate the application by performing in vivo imaging of bare and bioconjugated FND particles (100 nm in diameter) in C. elegans and zebrafishes and exploring the interactions between this novel nanomaterial and the model organisms. Our results indicate that FNDs can be delivered to the embryos of both organisms by microinjection and eventually into the hatched larvae in the next generation. No deleterious effects have been observed for the carbon-based nanoparticles in vivo. The high fluorescence brightness, excellent photostability, and nontoxic nature of the nanomaterial have allowed long-term imaging and tracking of embryogenesis in the organisms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These two authors contribute equally to this work.

References

REFERENCES

1. Alivisatos, P., Nat. Biotechnol. 22, 47 (2004).Google Scholar
2. Hell, S. W., Nat. Meth. 6, 24 (2009).Google Scholar
3. Gao, X., Cui, Y., Levenson, R. M., Chung, L. W., Nie, S., Nat. Biotechnol. 22, 969 (2004).Google Scholar
4. Park, J. H., Gu, L., von Maltzahn, G., Ruoslahti, E., Bhatia, S. N., Sailor, M. J., Nat. Mater. 8, 331 (2009).Google Scholar
5. Lim, S. F., Riehn, R., Ryu, W. S., Khanarian, N., Tung, C. K., Tank, D., Austin, R. H., Nano Lett. 6, 169 (2006).Google Scholar
6. Welsher, K., Liu, Z., Sherlock, S. P., Robinson, J. T., Chen, Z., Daranciang, D., Dai, H., Nat. Nanotechnol. 4, 773 (2009).Google Scholar
7. Yu, S.-J., Kang, M.-W., Chang, H.-C., Chen, K.-M., Yu, Y.-C., J. Am. Chem Soc. 127, 17604 (2005).Google Scholar
8. Rand, S. C., in Properties and Growth of Diamond (Ed: Davies, G.), EMIS Datareviews Series No. 9, INSPEC, The Institute of Electrical Engineers, London 1994, Ch. 7.4.Google Scholar
9. Fu, C.-C., Lee, H.-Y., Chen, K., Lim, T.-S., Wu, H.-Y., Lin, P.-K., Wei, P.-K., Tsao, P.-H., Chang, H.-C., Fann, W., Proc. Nat. Acad. Sci. USA 104, 727 (2007).Google Scholar
10. Faklaris, O., Garrot, D., Joshi, V., Druon, F., Boudou, J. P., Sauvage, T., Georges, P., Curmi, P. A., Treussart, F., Small 4, 2236 (2008).Google Scholar
11. Chang, Y.-R., Lee, H.-Y., Chen, K., Chang, C.-C., Tsai, D.-S., Fu, C.-C., Lim, T.-S., Tzeng, Y.-K., Fang, C.-Y., Han, C.-C., Chang, H.-C., Fann, W., Nat. Nanotechnol. 3, 284 (2008).Google Scholar
12. Vaijayanthimala, V., Chang, H.-C., Nanomed. 4, 47 (2009).Google Scholar
13. Liu, K.-K., Cheng, C.-L., Chang, C.-C., Chao, J.-I., Nanotechnology 18, 325102 (2007).Google Scholar
14. Schrand, A. M., Huang, H., Carlson, C., Schlager, J., Osawa, E., Hussain, S., Dai, L., J. Phys. Chem. B 111, 2 (2007).Google Scholar
15. Vial, S., Mansuy, C., Sagan, S., Irinopoulou, T., Burlina, F., Boudou, J.-P., Chassaing, G., Lavielle, S., ChemBioChem 9, 2113 (2008).Google Scholar
16. Vaijayanthimala, V., Tzeng, Y.-K., Chang, H.-C., Li, C. L., Nanotechnology 20, 425103 (2009).Google Scholar
17. Mohan, N., Tzeng, Y.-K., Yang, L., Chen, Y.-Y., Hui, Y. Y., Fang, C.-Y., Chang, H.-C., Adv. Mater. 22, 843 (2010).Google Scholar
18. Kong, X. L., Huang, L. C. L., Hsu, C.-M., Chen, W.-H., Han, C.-C., Chang, H.-C., Anal. Chem. 77, 259 (2005).Google Scholar
19. Tzeng, Y.-K., Faklaris, O., Chang, B.-M., Kuo, Y., Hsu, J.-H., Chang, H.-C., Angew. Chem. Int. Ed. 50, 2262 (2011).Google Scholar
20. Brenner, S., Genetics 77, 71 (1974).Google Scholar
21. Westerfield, M., The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio Rerio*), 5th Ed., Eugene, University of Oregon Press, 2007.Google Scholar
22. Mello, C. C., Kramer, J. M., Stinchcomb, D., Ambros, V., EMBO J. 10, 3959 (1991).Google Scholar
23. Piston, D. W., Lippincott-Schwartz, J., Patterson, G. H., Claxton, N. S., Davidson, M. W., http://www.microscopyu.com/articles/livecellimaging/fpintro.html, (2005).Google Scholar
24. Baird, G. S., Zacharias, D. A., Tsien, R. Y., Proc. Natl. Acad. Sci. USA 97, 11984 (2000).Google Scholar
25. Wee, T.-L., Tzeng, Y.-K., Han, C.-C., Chang, H.-C., Fann, W., Hsu, J.-H., Chen, K.-M., Yu, Y.-C., J. Phys. Chem. A 111, 9379 (2007).Google Scholar
26. Hong, Q. A., Sheetz, M. P., Elson, E. L., Biophys. J. 60, 910 (1991).Google Scholar
27. Krichevsky, O., Bonnet, G., Rep. Prog. Phys. 65, 251 (2002).Google Scholar
28. Sulston, J. E., Horvitz, H. R., Dev. Biol. 56, 110 (1977).Google Scholar
29. Sulston, J. E., Schierenberg, E., White, J. G., Thomson, J. N., Dev. Biol. 100, 64 (1983).Google Scholar
30. Anderson, G. L., Boyd, W. A., Williams, P. L., Environ. Toxicol. Chem. 20, 833 (2001).Google Scholar
31. Mohan, N., Chen, C.-S., Hsieh, H.-H., Wu, Y.-C., Chang, H.-C., Nano Lett. 10, 3692 (2010).Google Scholar
32. Wolke, U., Jezuit, E. A., Priess, J. R., Development 134, 2227 (2007).Google Scholar
33. Streisinger, G., Walker, C., Dower, N., Nature 291, 293 (1981).Google Scholar
34. Parng, C., Curr. Opion. Drug Discovery Dev. 8, 100 (2005).Google Scholar
35. Fishman, M. C., Science 294, 1290 (2001).Google Scholar
36. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., Schilling, T. F., Dev. Dynam. 203, 253 (1995).Google Scholar