Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-15T15:18:54.193Z Has data issue: false hasContentIssue false

High Temperature 2-D Millimeter-Wave Radiometry of Micro Grooved Nuclear Graphite

Published online by Cambridge University Press:  21 February 2013

Paul P. Woskov
Affiliation:
MIT Plasma Science and Fusion Center, 167 Albany Street, Cambridge, MA 02139, U.S.A.
S. K. Sundaram
Affiliation:
Alfred University, Kazuo Inamori School of Engineering, 2 Pine Street, Alfred, NY, 14802, U.S.A.
Get access

Abstract

A dual 137 GHz heterodyne radiometer system was used to study grooved nuclear grade graphite (SGL Group NBG17) inside an electric furnace from room temperature to 1250°C. The millimeter wave radiometer views were collinear with the electric field of one polarized parallel, and the other perpendicular, to the grooves. The anisotropic emissivity was readily detected for 100 μm wide grooves of various depths with a spacing period of 0.76 mm. The emissivity in the 500 – 1250°C temperature range was found to be 5.1 ± 0.5% when the E-field was parallel to the grooves and a factor of 2 – 4 higher, depending on groove depth, in the perpendicular direction. The parallel surface emissivity which was identical to ungrooved surface emissivity corresponded to a 137 GHz surface resistance of 5.3 Ohms, which is about 2.5 times higher than the value predicted from frequency scaling dc surface resistance. The perpendicular emissivity had a modulation with groove depth at odd integral multiples of ¼λ, predicted by electromagnetic finite difference time domain analysis.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albers, T. L., J. of Engineering for Gas Turbines and Power, 131, 064501 (2009).10.1115/1.3093995CrossRefGoogle Scholar
Bonal, J. P., Kohyama, A., Laan, J., Snead, L. L., MRS Bulletin, 34, 2834 (2009).10.1557/mrs2009.9CrossRefGoogle Scholar
Hodgkins, A., Marrow, T. J., Mummery, P., Marsden, B. and Fok, A., Materials Science and Technology, 22, 10451051 (2006).10.1179/174328406X114126CrossRefGoogle Scholar
Kakui, H. and Oku, T., J. of Nuclear Materials, 137, 124129 (1986).10.1016/0022-3115(86)90041-3CrossRefGoogle Scholar
Erikssona, A.S., Mattsson, J., Niklasson, A.J., NDT&E International, 33, 441451 (2000).10.1016/S0963-8695(00)00016-5CrossRefGoogle Scholar
Woskov, P. P. and Sundaram, S. K., Proc. 2010 MRS Fall Meeting, Symposium R, Boston, (2010).Google Scholar
Woskov, P. P., Sundaram, S. K., Daniel, W. E. Jr., Miller, D., J. of Non Crystalline Solids, 341 /1-3 , 2125 (2004).10.1016/j.jnoncrysol.2004.05.009CrossRefGoogle Scholar
Kasparek, W., Fernandez, A., Hollmann, F., and Wacker, R., Int. J. of Infrared and Millimeter Waves, 22, 16951707 (2001)10.1023/A:1015064616703CrossRefGoogle Scholar
Woskov, P.P. and Sundaram, S. K., J. Appl. Phys., 92, 63026310 (2002)10.1063/1.1516864CrossRefGoogle Scholar
Ramo, S., Whinnery, J. R., Duzer, T. V., Fields and Waves in Communications, 2 ed., p. 290, John Wiley & Sons, New York (1984).Google Scholar
Ibid, p. 152 Google Scholar
Bharitia, P.B. and Bahl, I. J., Millimeter-Wave Engineering and Applications, p. 202, John Wiley & Sons, New York (1984)Google Scholar
Plaum, B., Holzhauer, E., Lechte, C., J Infrared Milli Terahz Waves, 32, 482495 (2011)10.1007/s10762-011-9778-5CrossRefGoogle Scholar