Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-17T20:03:29.651Z Has data issue: false hasContentIssue false

Hydrogen-induced Changes of The Microscopic Structure of Microcrystalline Silicon

Published online by Cambridge University Press:  10 February 2011

I. Kaiser
Affiliation:
Hahn-Meitner-Institut, Rudower Chaussee 5, 12489 Berlin, F. R. Germany.
N. H. Nickel
Affiliation:
Hahn-Meitner-Institut, Rudower Chaussee 5, 12489 Berlin, F. R. Germany.
W. Pilz
Affiliation:
Bundesanstalt füir Materialforschung und Materialprüfung, Unter den Eichen 78, 12205 Berlin, F. R. Germany.
W. Fuhs
Affiliation:
Hahn-Meitner-Institut, Rudower Chaussee 5, 12489 Berlin, F. R. Germany.
Get access

Abstract

Microcrystalline silicon samples were exposed to an electron cyclotron resonance (ECR) hydrogen plasma at various exposure times and substrate temperatures. Before and after each post-hydrogenation treatment the crystalline fraction, Xc, was determined from Raman backscattering spectra. The results reveal that the change of Xc strongly depends on the structural composition of the starting material. Amorphous samples exhibit an increase of Xc while for ltc-Si specimens the Xc decreases. The decrease of Xc is enhanced for specimens with a high initial crystalline fraction. The same plasma treatment of Si-wafers did not lead to amorphisation. We conclude that the presence of lattice strain is required to observe a H-induced decrease of Xc.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Akasaka, T. and Shimizu, I., Appl. Phys. Lett. 66, 3441 (1995).Google Scholar
2. Godet, C., Layadi, N., and Cabarrocas, P. Rocai, Appl. Phys. Lett. 66, 3146 (1995).Google Scholar
3. Saitoh, K., Kondo, M., Fukawa, M., Nishimiya, T., Matsuda, A., Fukato, W., and Shimizu, I. Appl. Phys. Lett. 71, 3403 (1997).Google Scholar
4. Beckers, I., Conrad, E., Mfiller, P., Nickel, N. H., Sieber, I., and Fuhs, W., Mat. Res. Soc. Symp.Proc. Vol.452, 773 (1997).Google Scholar
5. Hapke, P., PhD Theses, Aachen, Germany (1995).Google Scholar
6. Iqbal, Z., Veprek, S., Webb, A. P. and Capezzuto, P., Solid State Comm. 37, 993 (1981).Google Scholar
7. Sieber, I., Urban, I., Dorfel, I., Koynov, S., Schwarz, R., Schmidt, M., Thin Solid Films 276, 314(1996).Google Scholar
8. Nickel, N. H., Jackson, W. B., and Walker, J., Phys. Rev. B 53, 7750 (1996).Google Scholar
9. Beckers, I., Nickel, N. H., Pilz, W., and Fuhs, W., J. Non-Cryst. Sol., at press.Google Scholar
10. Tsai, C. C., Thompson, R., Doland, C., Ponce, F. A., Anderson, G. B., and Wacker, B., Mat. Res. Soc. Symp. Proc. 118, 49 (1988).Google Scholar
11. Shibata, N., Fukuda, K., Ohtoshi, H., Hanna, J., Oda, S., and Shimizu, I., Mater. Res. Soc. Symp. Proc. 95, 225 (1987).Google Scholar
12. Nickel, N. H. and Jackson, W. B., Phys. Rev.B51, 4872 (1995).Google Scholar
13. Jackson, W. B., Johnson, N. M., and Biegelsen, D. K., Appl. Phys. Lett. 43, 195 (1983).Google Scholar