Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-01T11:54:05.622Z Has data issue: false hasContentIssue false

Hydrosilylation of Silicon Surfaces: Crystalline versus Amorphous

Published online by Cambridge University Press:  01 February 2011

Andrea Lehner
Affiliation:
Martin Stutzmann Walter Schottky Institut, Technische Universität München, 85748 Garching, Germany
Georg Steinhoff
Affiliation:
Martin Stutzmann Walter Schottky Institut, Technische Universität München, 85748 Garching, Germany
Martin S. Brandt
Affiliation:
Martin Stutzmann Walter Schottky Institut, Technische Universität München, 85748 Garching, Germany
Martin Eickhoff
Affiliation:
Martin Stutzmann Walter Schottky Institut, Technische Universität München, 85748 Garching, Germany
Get access

Abstract

Using thermally induced hydrosilylation, organic molecules were covalently bonded to H-terminated crystalline silicon (111) and hydrogenated amorphous silicon (a-Si:H) surfaces. The resulting chemical surface structure was analyzed by X-ray photoelectron spectroscopy (XPS) and compared to that of silicon surfaces covered by a native oxide or terminated with hydrogen. For both kinds of substrates, the presence of oxygen on the surface is found to hinder the hydrosilylation reaction. Stable H-termination as a starting point for a successful hydrosilylation can be obtained on a-Si:H surfaces with much less technological effort than on crystalline silicon surfaces. Photoconductivity measurements of the different a-Si:H surfaces at low intensity of illumination (monomolecular recombination regime) indicate that the hydrosilylated surface has less defects than the H-terminated surfaces or surfaces covered with native oxide. Spin-dependent photoconductivity measurements identify the dominant paramagnetic defect at the hydrosilylated a-Si:H surface to be the silicon dangling bond.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Linford, M.R., Fenter, P., Eisenberger, P., Chidsey, C., J. Am. Chem. Soc. 117, 3145 (1995).Google Scholar
2. Bansal, A., Li, X., Yi, S.I., Weinberg, W.H., Lewis, N.S., J. Phys. Chem. B 105, 10266 (2001).Google Scholar
3. Kar, S., Miramond, C., Vuillaume, D., Appl. Phys. Lett. 78, 1288 (2001).Google Scholar
4. Ponpon, J.P., Bourdon, B., Solid State Electronics 25, 875 (1982).Google Scholar
5. Lehner, A., Kohl, F., Franzke, S.A., Graf, T., Brandt, M.S., Stutzmann, M., Appl.Phys. Lett. 82, 565 (2003).Google Scholar
6. Bell, F.G., Ley, L., Phys. Rev. 37, 8383 (1988).Google Scholar
7. Lehner, A., Steinhoff, G., Brandt, M.S., Eickhoff, M., Stutzmann, M., J. Appl. Phys., in print.Google Scholar
8. Hirose, M., Yasaka, T., Takakura, M., Miyazaki, S., Solid State Technology, 43 (Dec. 1991).Google Scholar
9. Gonda, S., Tanaka, M., Kurosawa, T., Kojima, I., Jpn. J. Appl. Phys. 37, L 1418 (1998).Google Scholar
10. Hsu, J.W.P., Bahr, C.C., A. vom Felde, Downey, S.W., Higashi, G.S., Cardillo, M.J., J. Appl. Phys. 71, 4983 (1992).Google Scholar
11. Shockley, W., Read, W.T., Phys. Rev. 87, 835 (1952).Google Scholar
12. Hall, R.N., Phys. Rev. 87, 387 (1952).Google Scholar
13. Dersch, H., Schweitzer, L., Stuke, J., Phys. Rev. B 28, 4678 (1983).Google Scholar