Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-02T04:09:45.374Z Has data issue: false hasContentIssue false

Improved Crystallinity of Microcrystalline Silicon Films Using Deuterium Dilution

Published online by Cambridge University Press:  17 March 2011

Susumu Suzuki
Affiliation:
Thin Film Silicon Solar Cell Superlab, Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305-8568, Japan
Michio Kondo
Affiliation:
Thin Film Silicon Solar Cell Superlab, Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305-8568, Japan
Akihisa Matsuda
Affiliation:
Thin Film Silicon Solar Cell Superlab, Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305-8568, Japan
Get access

Abstract

Deuterium dilution instead of hydrogen has been studied in microcrystalline silicon growth using plasma enhanced chemical vapor deposition with monosilane. It was found that the crystallinity for D2 dilution is significantly improved as compared to that for H2 dilution at the same growth rate. Optical emission spectroscopy measurement shows that the electron temperature of SiH4 + D2 plasma is lower than that of SiH4 + H2, indicating that the bombarding ion energy is reduced for D2 dilution. It was also found that the H-D exchange reaction on the surface has a certain threshold number of events and that microcrystalline formation occurs only above the threshold. The role of atomic hydrogen originating from a diluent in crystal formation is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yamamoto, K., Yoshimi, M., Suzuki, T., Tawada, Y., Okamoto, Y. and Nakajima, A., Mat. Res. Soc. Symp. Proc. 507, 131(1998).Google Scholar
2. Meier, J., Torres, P., Platz, R., Dubail, S., Kroll, U., Selvan, J. A. Anna, Vaucher, N. Pellaton, Hof, Ch, Fischer, D., Keppner, H., Shah, A., Ufert, K. D., Giannoules, P., Koehler, J., Mat. Res. Soc. Symp. Proc. 420, 3(1996).Google Scholar
3. Feitknecht, L., Kluth, O., Ziegler, Y., Niquille, X., Torres, P., Meier, J., Wyrsch, N. and Shah, A., Technical digest, PVSEC-11, 239 (Sapporo, Japan, 1999).Google Scholar
4. Guo, L., Kondo, M., Fukawa, M., Saitoh, K. and Matsuda, A., Jpn. J. Appl.Phys. 37, L1116 (1998).Google Scholar
5. Kondo, M., Fukawa, M., Guo, L. and Matsuda, A., J. Non-cryst. solids., in press.Google Scholar
6. Guo, L., Toyoshima, Y., Kondo, M. and Matsuda, A., Appl. Phys. Lett. 75, 3515 (1999).Google Scholar
7. Wei, J. H., Sun, M. S. and Lee, S. C., Appl. Phys. Lett. 71, 1498 (1997).Google Scholar
8. Koleske, D.D., Gates, S. M. and Schultz, J. A., J. Chem. Phys. 99, 5619 (1993).Google Scholar
9. Srinivasan, E. and Parsons, G. N., Appl. Phys. Lett. 72, 456 (1998).Google Scholar
10. Jia, Y., Yamada, A., Konagai, M. and Takahashi, K., Jpn. J. Appl.Phys. 30, 893 (1991).Google Scholar
11. Toyoshima, Y., Matsuda, A. and Arai, K., J. Non-cryst. solids. 164–166, 103 (1993).Google Scholar