Published online by Cambridge University Press: 10 February 2011
In situ transmission electron microscopy (150 kV) has been employed to study the evolution of dislocation microstructures during relatively rapid thermal cycling of a 200 nm Al thin film on Si substrate. After a few thermal cycles between 150 and 500°C, nearly stable Al columnar grain structure is established with average grain less than a μm. On rapid cooling (3–30+ °C/s) from 500°C, dislocations first appear at a nominal temperature of 360–380°C, quickly multiplying and forming planar glide plane arrays on further cooling. From a large number of such experiments we have attempted to deduce the dislocation evolution during thermal cycling in these polycrystalline Al films and to account qualitatively for the results on a simple dislocation model.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.