Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-18T18:01:13.538Z Has data issue: false hasContentIssue false

The Influence of Light-Soaking and Atmospheric Adsorption on Microcrystalline Silicon Films studied by Coplanar Transient Photoconductivity

Published online by Cambridge University Press:  21 March 2011

V. Smirnov
Affiliation:
EPICentre, School of Computing and Advanced Technologies, University of Abertay Dundee, Bell Street, Dundee DD1 1HG, U.K.
S. Reynolds
Affiliation:
EPICentre, School of Computing and Advanced Technologies, University of Abertay Dundee, Bell Street, Dundee DD1 1HG, U.K.
F. Finger
Affiliation:
IPV, Forschungszentrum Jülich, D-52425 Jülich, Germany.
C. Main
Affiliation:
EPICentre, School of Computing and Advanced Technologies, University of Abertay Dundee, Bell Street, Dundee DD1 1HG, U.K.
R. Carius
Affiliation:
IPV, Forschungszentrum Jülich, D-52425 Jülich, Germany.
Get access

Abstract

A study of the effects of light-soaking and atmospheric adsorption (aging) on the dark- and photo-conductivity of a series of microcrystalline silicon films of varying crystallinity is presented. Light-soaking in vacuum slightly reduces photoconductivity in films close to the amorphous – microcrystalline transition, and there is also a reduction in dark current. Aging increases the dark current, and thus unless due care is taken during light-soaking experiments to eliminate or compensate for aging, the apparent effect of light-soaking may be reduced or even reversed in sign. Transient photocurrent decays confirm the presence of a large density of metastable light-induced defects. A shift in the apparent distribution of defects occurs on prolonged aging, which may be due either to changes in the DOS or a shift in the Fermi level.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Vetterl, O., Finger, F., Carius, R., Hapke, P., Houben, L., Kluth, O., Lambertz, A., Mück, A., Rech, B., Wagner, H., Solar Energy Materials & Solar Cells 62, 97 (2000).Google Scholar
[2] Klein, S., Finger, F., Carius, R., Dylla, T., Rech, B., Grimm, M., Houben, L., Stutzmann, M., Thin Solid Films 430, 202 (2003).Google Scholar
[3] Veprek, S., Iqbal, Z., Kühne, R.O., Capezzuto, P., Sarott, F-A., Gimzewski, J.K., J. Phys. C: Solid State Phys. 16, 6241 (1983).Google Scholar
[4] Finger, F., Carius, R., Dylla, T., Klein, S., Okur, S., Günes, M., IEE Proc. CDS 150, 300 (2003).Google Scholar
[5] Smirnov, V., Reynolds, S., Main, C., Finger, F., Carius, R., J. Non-Cryst. Solids (in press).Google Scholar
[6] Wang, Q., Wang, K., Han, D., MRS Symp. Proc. 762, A7.10.1 (2003).Google Scholar
[7] Reynolds, S., Main, C., Webb, D.P., Rose, M.J., Phil. Mag. B 80, 547 (2000).Google Scholar
[8] Tzolov, M., Finger, F., Carius, R., Hapke, P., J. Appl. Phys. 81 (11), 7376 (1997).Google Scholar
[9] Kocka, J., Fejfar, A., Stuchlikova, H., Stuchlik, J., Fojtik, P., Mates, T., Rezek, B., Luterova, K., Svrcek, V., Pelant, I., Solar Energy Materials & Solar Cells 78, 493 (2003).Google Scholar