Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-02T04:08:52.830Z Has data issue: false hasContentIssue false

Ion Implanted Er and Tb in SiO2 for Electroluminescence in MOS Diodes

Published online by Cambridge University Press:  17 March 2011

Ch. Buchal
Affiliation:
Institut für Schicht- und Iontechnik (ISI-IT), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
S. Coffa
Affiliation:
CNR-IMETEM, Strada le Primosole 50, 95121Catania, Italy
S. Wang
Affiliation:
Institut für Schicht- und Iontechnik (ISI-IT), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
R. Carius
Affiliation:
Institut für Schicht- und Iontechnik (ISI-IT), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
Get access

Abstract

Efficient infra-red and visible electroluminescence(EL) has been obtained from implanted rare earth ions in the SiO2 of a silicon-metal-oxide-semiconductor (MOS) diode structure at room temperature. The rare earth ions are excited by the direct impact of hot electrons tunneling through the oxide at electric fields larger than 6 MV/cm. The internal quantum efficiencies of Er and Tb implanted MOS diodes are estimated to be 10 % and 3 %, respectively. The hgh quantum efficiency is due to the high impact excitation cross-section of more than 10− 15cm2. These observations on MOS structures are an experimental proof for efficient light generation by hot electron impact.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Coffa, S., Franzo, G., Priolo, F., Appl. Phys. Lett. 69, 2077 (1996).Google Scholar
2. Franzo, G., Coffa, S., Priolo, F., Spinella, C., J. Appl. Phys. 81, 2784 (1997).Google Scholar
3. , Reittingger, Stimmer, J., Abstreiter, G., Appl. Phys. Lett. 70, 2431 (1997).Google Scholar
4. Wang, S., Eckau, A., Neufeld, E., Carius, R., Buchal, Ch., Appl. Phys. Lett. 71, 2824 (1997).Google Scholar
5. Fischetti, M.V., Dimaria, D. J., Brorson, S. D., Theis, T. N., and Kirtley, J. R., Phys. Rev. B 31, 8124 (1985).Google Scholar
6. Lombardo, S.. Campisano, S. U., Hoven, G. N. van den, and Polman, A., J. Appl. Phys. 77, 504 (1995).Google Scholar
7. Sano, N. and Yoshii, A., J. Appl. Phys. 75, 5102 (1994).Google Scholar
8. Favennec, P. N., L'Haridon, H., Salvi, M., Moutonnet, D. and Guillou, Y. Le, Electron. Lett. 25, 718 (1989).Google Scholar
9. Chang, S. J. and Takahei, K., Appl. Phys. Lett. 65, 433 (1994).Google Scholar
10. Wang, X. Z., and Wessels, B. W., Appl. Phys. Lett. 65, 584 (1994).Google Scholar
11. Torvik, J., Qiu, C. H., Feuerstein, R. J., Pankove, J. I. and Namavar, F., J. Appl. Phys. 81, 6343 (1997).Google Scholar
12. Garter, M., Scofield, J., Birkhahn, R. and Steckl, A. J., Appl. Phys. Lett. 74, 182 (1999).Google Scholar
13. Coffa, S., Franzò, G., Priolo, F., Pacelli, A., Lacaita, A., Appl. Phys. Lett. 73, 93 (1) (1998)Google Scholar
14. Wang, S., Amekura, H., Eckau, A., Carius, R. and Buchal, Ch., Nucl. Instr. Meth. B 148, 481 (1999).Google Scholar