No CrossRef data available.
Article contents
Lanthanide Based Ternary Intermetallics as Advanced Thermoelectric Materials
Published online by Cambridge University Press: 26 February 2011
Abstract
Polycrystalline ingots of the lanthanide based ternary intermetallics: LaNiSb, GdNiSb, ErNiSb and ErPdSb were prepared and characterized. The thermoelectric properties of ErNiSb and ErPdSb were measured at high temperatures. We succeeded in preparing the single phase ingots of ErNiSb and ErPdSb, while the ingots of LaNiSb and GdNiSb contain appreciable quantities of the impurity phases. ErNiSb and ErPdSb crystallize the MgAgAs-type structure (half-Heusler structure). ErNiSb and ErPdSb indicate positive values of the Seebeck coefficient. The values at room temperature are 36 and 240 micro VK-1 for ErNiSb and ErPdSb, respectively. The electrical resistivity of ErNiSb and ErPdSb decreases with temperature, indicating semiconductor-like behavior. ErPdSb exhibits a relatively large power factor 1.5x10-3 Wm-1K-2 at around 700 K, which is approximately two times larger than that of ErNiSb.
Keywords
- Type
- Research Article
- Information
- MRS Online Proceedings Library (OPL) , Volume 980: Symposium II – Advanced Intermetallic-Based Alloys , 2006 , 0980-II05-44
- Copyright
- Copyright © Materials Research Society 2007