Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-03T03:07:55.527Z Has data issue: false hasContentIssue false

MBE Grown AlN Films on SiC for Piezoelectric MEMS Sensors

Published online by Cambridge University Press:  01 February 2011

Dharanipal Doppalapudi
Affiliation:
Boston MicroSystems Inc., Woburn, MA 01801
Richard Mlcak
Affiliation:
Boston MicroSystems Inc., Woburn, MA 01801
Jeffrey Chan
Affiliation:
Boston MicroSystems Inc., Woburn, MA 01801
Harry Tuller
Affiliation:
Boston MicroSystems Inc., Woburn, MA 01801
Anirban Bhattacharya
Affiliation:
Boston University, Boston MA 02215
Theodore Moustakas
Affiliation:
Boston MicroSystems Inc., Woburn, MA 01801 Boston University, Boston MA 02215
Get access

Abstract

Miniaturized piezoelectric sensors based on Microelectromechanical Systems (MEMS) offer the advantages of reduced size, reduced power consumption, increased sensitivity coupled with the ability to form compact multi-sensor arrays. Fabrication of such sensors from single crystal materials further insure more highly reproducible and stable devices with improved performance. In this paper, we describe the integration of MBE grown AlN films onto photoelectrochemically machined SiC microcantilevers and membranes. AlN exhibits excellent piezoelectric properties, including an electromechanical coupling coefficient of 0.088 and a high in-plane acoustic velocity (∼5700m/sec) as well as excellent thermal-mechanical compatibility with SiC. The fabrication of AlN-SiC-based microresonators and flexural plate wave devices, and their application to chemical, biological and fluid sensing, are reported.

Type
articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsubouchi, K., Mikoshiba, N., IEEE Teans. On Sonics and Ultra. Vol. SU-32, p. 634, 1995 Google Scholar
2. Liaw, H. M., Hickernell, F.S., IEEE Trans. On Ultrasonics, Ferroelectrics and Frequency control, 42, 404, 1995.Google Scholar
3. Deger, C., Born, E., Angerer, H., Ambacher, O., Stutzmann, M., Hornsteiner, J., Riha, E., Fischerauer, G., Appl. Phys. Lett., 72, 2400, 1998.Google Scholar
4. Pettersen, S. B., Tybell, T., Ronneklei, A., Rooth, S., Schwegler, V., Grepstad, J., Mat. Res. Soc. Fall 2002 meetingGoogle Scholar
5. Deng, J., Ciplys, D., Bu, G., Shur, M.S., Gaska, R., Mat. Res. Soc. Fall 2002 meetingGoogle Scholar
6. Tuller, H.L., Mlcak, R., Current opinion in solid state & materials science, 3, 501, 1998.Google Scholar
7. Mlcak, R., Tuller, H.L., US Patent # 5,338,416, Aug. 16, 1994.Google Scholar
8. Mlcak, R., Tuller, H.L., US Patent # 5,464,509, Nov. 7, 1995 Google Scholar
9. Tuller, H.L., Mlcak, R., Sensors and Actuators B, 35–36, 1996, p. 255 Google Scholar
10. Doppalapudi, D., Moustakas, T.D., Handbook of Thin Films, ed. Nalwa, By H.S., Vol 4, p. 57, 2002 Google Scholar
11. Mlcak, R., Doppalapudi, D., Chan, J., Sampath, A.V., Moustakas, T.D., Tuller, H.L., The 3rd Intl' Aviation Security Technology Symposium, Nov. 27–30, 2001 Google Scholar
12. Mlcak, R., Doppalapudi, D., Chan, J., Tuller, H.L., Houser, E. J. and Wu, H., to be publishedGoogle Scholar
13. Eto, T.K., Costello, B.J., Wenzel, S.W., White, R.M., and Ribinsky R., B., J. Biomechanical Eng. 115, 329 (1993).Google Scholar
14. Martin, , Frye, S.J., Cernosek, G.C., Senturia, R.W., S.D., , Proceedings Solid-State Sensor and Actuator Workshop, 13–16 June 1994, Hilton Head, SC, pp. 229233.Google Scholar
15. Acoustic Wave Sensors, Eds. Ballantine, D.S., White, R.M., Martin, S.I., Ricco, A.J., Zellers, E.T., Frye, G.C. and Wohltjen, H., eds. Academic Press, 1997.Google Scholar
16. Wenzel, S.W, White, R.M., IEEE Trans. Electron Devices, ED–35, p. 735, (1988).Google Scholar