Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-02T02:15:11.422Z Has data issue: false hasContentIssue false

Measurement of Impurity Profiles in Microcrystalline Silicon Solar Cells by SIMS

Published online by Cambridge University Press:  17 March 2011

Arup Dasgupta
Affiliation:
Energy Research Unit, Indian Association for the Cultivation of Science, Calcutta, INDIAE-mail:arup_dasgupta@hotmail.com
Uwe Zastrow
Affiliation:
Institut für Photovoltaik (IPV), Forschungszentrum Jülich GmbH, Germany
Andreas Lambertz
Affiliation:
Institut für Photovoltaik (IPV), Forschungszentrum Jülich GmbH, Germany
Oliver Vetterl
Affiliation:
Institut für Photovoltaik (IPV), Forschungszentrum Jülich GmbH, Germany
Friedhelm Finger
Affiliation:
Institut für Photovoltaik (IPV), Forschungszentrum Jülich GmbH, Germany
Wolfhard Beyer
Affiliation:
Institut für Photovoltaik (IPV), Forschungszentrum Jülich GmbH, Germany
Swati Ray
Affiliation:
Energy Research Unit, Indian Association for the Cultivation of Science, Calcutta, INDIA
Get access

Abstract

The concentration profiles of B, P, Zn, and O in the active intrinsic (i) νc-Si:H layer and across the interfaces in p-i-n and n-i-p structures have been measured with SIMS. For the ZnO/νc-p/νc-i sequences, an apparent B and O profile extends over several hundred nanometers into the i-layer, and high levels of Zn can be found well above the ZnO substrate layer. These profiles are not affected by annealing at the deposition temperature. Much lower impurity concentrations are measured for n-i-p deposition sequences, or when the p-layer or the i-layer is amorphous. Ruling out diffusion and intermixing processes, evidence for the presence of pinholes in the material is presented, which explain most of the experimental findings.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Meier, J., Dubail, S., Cuperus, J., Kroll, U., Platz, R., Torres, P., Selvan, J.A. Anna, Pernet, P., Bech, N., Vaucher, N. Pellaton, Hof, C., Fischer, D., Keppner, H., Shah, A., J. Non-Cryst. Solids 227–300 (1998) 1250 Google Scholar
2. Yamamoto, K., Yoshimi, M., Suzuki, T., Tawada, Y., Okamoto, T., Nakajima, A., Mat. Res. Soc. Symp. Proc. 507 (1998) 131 Google Scholar
3. Saito, K., Sano, M., Matuda, K., Kondo, T., Nishimoto, T., Ogawa, K., Kajita, I., Proc. 2nd World Conf. Photovolt. Solar Energy Conv., ed. Schmid, J. et al. (European Commision, Ispra, Italy 1998) 351 Google Scholar
4. Vetterl, O., Finger, F., Carius, R., Hapke, P., Houben, L., Kluth, O., Lambertz, A., Mück, A., Rech, B., Wagner, H., Solar Energy Materials and Solar Cells 62 (2000) 97 Google Scholar
5. Vetterl, O., Lambertz, A., Dasgupta, A., Finger, F., Rech, B., Kluth, O., Wagner, H., Solar Cells and Solar Energy Materials (2000) in pressGoogle Scholar
6. Vetterl, O., Carius, R., Houben, L., Scholten, C., Luysberg, M., Lambertz, A., Finger, F., Wagner, H., this conferenceGoogle Scholar
7. Luysberg, M., Hapke, P., Carius, R. and Finger, F., Phil. Mag. A 75 (1997) 31 Google Scholar
8. Tzolov, M., Finger, F., Carius, R. and Hapke, P., J. Appl. Phys. 81 (1997) 7376 Google Scholar
9. Houben, L., Luysberg, M., Hapke, P., Carius, R., Finger, F., Wagner, H., Phil. Mag. A 77 (1998) 1447 Google Scholar
10. Finger, F., Müller, J., Malten, C., Wagner, H., Phil. Mag. B 77, (1998) 805 Google Scholar
11. Kluth, O., Rech, B., Houben, L., Wieder, S., Schope, G., Beneking, C., Wagner, H., Loffl, A. and Schock, H.W., Thin Solid Films 351 (1999) 247253 Google Scholar