Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-15T21:42:23.507Z Has data issue: false hasContentIssue false

Mesostructure of the Exoskeleton of the Lobster Homarus Americanus

Published online by Cambridge University Press:  01 February 2011

D. Raabe
Affiliation:
Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
P. Romano
Affiliation:
Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
A. Al-Sawalmih
Affiliation:
Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
C. Sachs
Affiliation:
Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
G. Servos
Affiliation:
Anatomy Department, Düsseldorf University, 40225 Düsseldorf, Germany
H.G. Hartwig
Affiliation:
Anatomy Department, Düsseldorf University, 40225 Düsseldorf, Germany
Get access

Abstract

The exoskeleton of the lobster Homarus americanus is a multiphase bio-composite which consists of a fibrous organic matrix (crystalline α-chitin and various types of non-crystalline proteins) and embedded biominerals (mainly calcite). In this study we present experimental data about the microscopic and mesoscopic structure of this material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vernberg, F.J. and Vernberg, W.B.: The biology of crustacea (Academic Press, USA, 1983)Google Scholar
2. Neville, A.C., “Biology of Fibrous Composites”, Cambridge University Press (1993)Google Scholar
3. Hadley, N. F., Sci Am 1986; 255:98106 Google Scholar
4. Vincent, J.F.V., Structural Biomaterials (Princeton University Press, USA, 1990)Google Scholar
5. Vincent, J.F.V. and Currey, J.D. (Eds.), Mechanical Properties of Biological Materials, Society for Experimental Biology (Cambridge, UK, 1980)Google Scholar
6. Ashby, M.F. and Wegst, U.G.K., Philosophical Magazine, 2004: 84:21672181.Google Scholar
7. Currey, J.D., J. Morphol. 1967; 123:116.Google Scholar
8. Currey, J.D., Current Opinion in Solid State & Materials Science, 1996; 1: 440445.Google Scholar
9. Hepburn, H.R., Joffe, I., Green, N. and Nelson, K.J., Camp. Bioch. Physiol. 1975; 50:551554.Google Scholar
10. Melnick, C.A., Chen, S. and Mecholsky, J.J., J. Mater. Res. 1996; 11: 29032907.Google Scholar
11. Vincent, J.F.V. and Wegst, U.G.K., Arthrop. struc. development 2004; 33:187199.Google Scholar
12. Vincent, J.F.V., Composites: Part A 2002; 33: 13111315.Google Scholar
13. Lowenstam, H.A., Science 1981, 211: 1126.Google Scholar
14. Mann, S., Webb, J. and Williams, R.J.P.: On biomineralization (VCH Press, New York, USA, 1989)Google Scholar
15. Lowenstam, H.A., Weiner, S. (Eds.), On Biomineralization, Oxford University Press, New York, 1989.Google Scholar
16. Weiner, S. and Addadi, L., J. Mater. Chem. 1997, 7: 689.Google Scholar
17. Mann, S., Chemistry. J. Mater. Chem. 1995; 5: 935.Google Scholar
18. Manoli, F., Koutsopoulos, S. and Dalas, E., J. Crystal Growth 1997; 182: 116.Google Scholar
19. Falini, G., Albech, S., Weiner, S. and Addadi, L., Science 1996, 271: 67.Google Scholar
20. Epple, M.: Biomaterialien und Biomineralisation (Teubner Verlag, Germany 2003)Google Scholar
21. Giraud-Guille, M.-M., Bouligand, Y., in: Z.S. Karnicki et al. (Eds.), Chitin World, Wirtschaftsverlag, 1995, pp. 136144.Google Scholar
22. Andersen, S.O., Ann. Rev. Entomol. 1979; 24: 2961.Google Scholar
23. Blackwell, J., Weih, M.-A., J. Mol. Biol. 1980; 137: 4960.Google Scholar
24. Giraud-Guille, M.M., J Struct. Biol. 1990; 103:232240.Google Scholar
25. Giraud-Guille, M.-M., Tissue Cell 1984; 16: 7592.Google Scholar
26. Andersen, S.O., Comparative Biochemistry and Physiology Part A 1999; 123: 203211.Google Scholar
27. Shen, Z. and Jacobs-Lorena, M., J. Molecular Evolution 1999; 48: 341347.Google Scholar
28. Falini, G., Fermani, S., Ripamonti, A., Journal of Inorganic Biochemistry 2002; 91: 475480.Google Scholar
29. Falini, G., Fermani, S., Ripamonti, A., Journal of Inorganic Biochemistry 2001; 84: 255258.Google Scholar
30. Falini, G., Gazzano, M., Ripamonti, A., J. Mater. Chem. 2000; 10: 535538.Google Scholar
31. Belcher, A.M., Wu, X.H., Christensen, R.J., Hansma, P.K., Stucky, G.D., and Morse, D.E., Nature 1996; 381: 56.Google Scholar
32. Weiner, S., Talmon, Y., and Traub, W., Int. J. Biol. Macromol. 1983; 5: 325.Google Scholar
33. Iijima, M. and Moriwaki, Y., Calcif. Tissue Int. 1990; 47: 237.Google Scholar
34. Raabe, D., A. Al-Sawalmih, Romano, P., Sachs, C., Brokmeier, H.-G., Yi, S.-B., Servos, G., Hartwig, H.G., Proceedings of the 14th International Conference on Textures of Materials ICOTOM 14, 2005, Leuven, Belgium, Materials Science Forum, in pressGoogle Scholar
35. Bouligand, Y., Tissue Cell. 1972; 4: 189217.Google Scholar
36. Hunt, S. and Sherief, A. El, Loligo vulgaris. Tiss. Cell 1990; 22a: 191197.Google Scholar
37. Bouligand, Y., in: 7e Congrès int. Microsc. Électr., Grenoble, France, 1970; 3: 105106.Google Scholar
38. Giraud-Guille, M.-M., Current Opinion in Solid State & Material Science, 1998; 3: 221228.Google Scholar
39. Raabe, D., Romano, P., Al-Sawalmih, A., Sachs, C., Brokmeier, H.-G., Yi, S.-B., Servos, G., Hartwig, H.G., J Crystal Growth, in pressGoogle Scholar
40. Raabe, D., Sachs, C., Romano, P., Acta Mater., in pressGoogle Scholar
41. Becker, A., Bismayer, U., Epple, M., Fabritius, H., Hasse, B., Shi, J., and Ziegler, A., Dalton Trans. of the The Royal Society of Chemistry 2003, 551555.Google Scholar