Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-01T06:21:03.914Z Has data issue: false hasContentIssue false

Mn-incorporated ZnSe and CdSe 1-dimensional Nanostructures

Published online by Cambridge University Press:  01 February 2011

Seonoh Hwang
Affiliation:
sunohoh5@naver.com, korea university, chemistry, Jochiwon 339-700, Korea, Republic of
Jinyoung Lee
Affiliation:
crom1979@empal.com, korea university, chemistry, Jochiwon, 339-700, Korea, Republic of
Hyunju Lee
Affiliation:
lhjera@korea.ac.kr, korea university, chemistry, Jochiwon, 339-700, Korea, Republic of
Sangwon Yoon
Affiliation:
pax0421@empal.com, korea university, chemistry, Jochiwon, 339-700, Korea, Republic of
Jeunghee Park
Affiliation:
parkjh@korea.ac.kr, korea university, chemistry, Jochiwon, 339-700, Korea, Republic of
Get access

Abstract

Novel Mn-incorporated ZnSe and CdSe 1-dimensionl nanostructures; straight nanowires, zigzagged nanobelts, and nanohooks, were first synthesized using chemical vapor deposition method. The Mn content reaches up to 40%. They all consisted of single-crystalline wurtzite structure for all Mn content. The structure has been thoroughly investigated by high-resolution transmission electron microscopy images as well as energy-dispersive X-ray fluorescence spectroscopy. The X-ray diffraction pattern confirms the formation of the wurtzite structure, even for 40% Mn incorporation. The lattice constants of Mn-doped ZnSe and CdSe 1-D nanostructures are expanded and reduced, respectively, by the Mn doping. The Mn2+ emission at 2.1 eV, originating from the d-d (4T16A1) transition, confirms the effective paramagnetic Mn2+ doping at tetrahedral coordinate sites. These Mn-incorporated nanostructures exhibit a paramagnetic behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hu, J., Odom, T. W., and Lieber, C. M., Acc. Chem. Res. 32, 435, (1999).Google Scholar
2. Ohno, H., Science, 281, 951, (1998).Google Scholar
3. Fiederling, R., Keim, M., Reuscher, G., Ossau, W., Schmidt, G., Waag, A. and Molenkamp, L. W., Nature (London), 402, 787 (1999).Google Scholar
4. Cai, Y., Chan, S. K., Sou, I. K., Chan, Y. F., Su, D. S. and Wang, N., Adv. Mater. 18, 109 (2006).Google Scholar
5. Leung, Y. P., Choy, W. C. H., Markov, I., Peng, G. K. H., Ong, H. C. and Yuk, T. I., Appl. Phys. Lett., 88, 183110 (2006).Google Scholar
6. Ohno, Y., Shirahama, T., Takeda, S., Ishizumi, A. and Kanemitsu, Y., Appl. Phys. Lett. 87, 043105 (2005).Google Scholar
7. Colli, A., Hofmann, S., Ferrari, A. C., Ducati, C., Martelli, F., Rubini, S., Cabrini, S., Franciosi, A. and Robertson, J., Appl. Phys. Lett. 86, 153103 (2005).Google Scholar
8. Zhang, X., Liu, Z., Li, Q., Leung, Y., Ip, K. and Hark, S., Adv. Mater. 17, 1405 (2005).Google Scholar
9. Hu, J., Bando, Y., Zhan, J., Liu, Z., Golberg, D. and Ringer, S. P., Adv. Mater. 17, 975 (2005).Google Scholar
10. Panda, A. B., Acharya, S. and Efrima, S., Adv. Mater. 17, 2471 (2005).Google Scholar
11. Xiong, S., Shen, J., Xie, Q., Gao, Y., Tang, Q. and Qian, Y., Adv. Funct. Mater. 15, 1787 (2005).Google Scholar
12. Wang, C., Wang, J., Li, Q. and Yi, G. –C., Adv. Funct. Mater. 15, 1471 (2005).Google Scholar
13. Jiang, Y., Meng, X. –M., Yiu, W. –C., Liu, J., Ding, J. –X., Lee, C. –S. and Lee, S. –T., J. Phys. Chem.B, 108, 2784 (2004).Google Scholar
14. Joo, J., Son, J. S., Kwon, S. G., Yu, J. H., and Hyeon, T., J. Am. Chem. Soc. 128, 5632 (2006).Google Scholar
15. Pradhan, N., Xu, H., and Peng, X., Nano Lett. 6, 720 (2006).Google Scholar