Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-15T16:29:23.073Z Has data issue: false hasContentIssue false

A new technique for imaging Mineralized Fibrils on Bovine Trabecular Bone Fracture Surfaces by Atomic Force Microscopy

Published online by Cambridge University Press:  01 February 2011

Johannes H. Kindt
Affiliation:
University of California Santa Barbara, Santa Barbara, CA, USA
Georg E. Fantner
Affiliation:
University of California Santa Barbara, Santa Barbara, CA, USA
Philipp J. Thurner
Affiliation:
University of California Santa Barbara, Santa Barbara, CA, USA
Georg Schitter
Affiliation:
University of California Santa Barbara, Santa Barbara, CA, USA
Paul K. Hansma
Affiliation:
University of California Santa Barbara, Santa Barbara, CA, USA
Get access

Abstract

High resolution atomic force microscopy (AFM) images of bovine trabecular bone fracture surfaces reveal individual fibrils coated with extrafibrillar mineral particles. The mineral particles are distinctly different in different regions. In some regions the particles have average dimensions of (70 ± 35) nm along the fibrils and about half that across the fibrils. In other regions they are smaller and rounder, of order (53 ± 14) nm both along and across the fibrils. In other regions they are smaller and rounder, of order (25 ± 15) nm both along and across the fibrils, with more rounded top surfaces.

Significantly, we rarely observed bare collagen fibrils. If the observed particles can be verified to be native extrafibrillar mineral, this could imply that the fractures which created the observed areas propagated within the mineralized extrafibrillar matrix.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fratzl, P., Groschner, M., Vogl, G., Plenk, H., Eschberger, J., Fratzlzelman, N., Koller, K. & Klaushofer, K. (1992) Journal of Bone and Mineral Research 7, 329334.Google Scholar
2. Fratzl, P., Fratzlzelman, N., Klaushofer, K., Vogl, G. & Koller, K. (1991) Calcified Tissue International 48, 407413.Google Scholar
3. Petruska, J. A. & Hodge, A. J. (1964) Proceedings of the National Academy of Sciences of the United States of America 51, 871-&.Google Scholar
4. Weiner, S. & Wagner, H. D. (1998) Annual Review of Materials Science 28, 271298.Google Scholar
5. Landis, W. J., Hodgens, K. J., Song, M. J., Arena, J., Kiyonaga, S., Marko, M., Owen, C. & McEwen, B. F. (1996) Journal of Structural Biology 117, 2435.Google Scholar
6. Prostak, K. S. & Lees, S. (1996) Calcified Tissue International 59, 474479.Google Scholar
7. Hassenkam, T., Fantner, G. E., Cutroni, J. A., Weaver, J. C., Morse, D. E. & Hansma, P. K. (2004) Bone 35, 410.Google Scholar
8. Habelitz, S., Balooch, M., Marshall, S. J., Balooch, G. & Marshall, G. W. (2002) Journal of Structural Biology 138, 227236.Google Scholar
9. Pasteris, J. D., Wopenka, B., Freeman, J. J., Rogers, K., Valsami-Jones, E., van der Houwen, J. A. M., & Silva, M. J. (2004) Biomaterials 25, 229238.Google Scholar
10. Eppell, S. J., Tong, W. D., Katz, J. L., Kuhn, L. & Glimcher, M. J. (2001) Journal of Orthopaedic Research 19, 10271034.Google Scholar
11. Tong, W., Glimcher, M. J., Katz, J. L., Kuhn, L. & Eppell, S. J. (2003) Calcified Tissue International 72, 592598.Google Scholar
12. Braidotti, P., Branca, F. P. & Stagni, L. (1997) Journal of Biomechanics 30, 155162.Google Scholar
13. Marti, O., Drake, B. & Hansma, P. K. (1987) Applied Physics Letters 51, 484486.Google Scholar
14. Kindt, J. H., Sitko, J. C., Pietrasanta, L. I., Oroudjev, E., Becker, N., Viani, M. B. & Hansma, H. G. (2002) Atomic Force Microscopy in Cell Biology 68, 213229.Google Scholar