Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-03T08:34:36.891Z Has data issue: false hasContentIssue false

Novel Zirconium Formamidinate Precursor for the ALD of ZrO2

Published online by Cambridge University Press:  31 January 2011

Huazhi Li
Affiliation:
huazhili@rohmhaas.com, Dow Electronic Materials, Metallorganic Technologies, North Andover, Massachusetts, United States
Deo V Shenai
Affiliation:
dshenai@rohmhaas.com, Dow Electronic Materials, Metallorganic Technologies, North Andover, Massachusetts, United States
Jean-Sebastien Lehn
Affiliation:
jlehn@rohmhaas.com, Dow Electronic Materials, Metallorganic Technologies, North Andover, Massachusetts, United States
Get access

Abstract

Zirconium tetrakis(N,N’-dimethylformamidinate), Zr-FAMD, was synthesized and evaluated as a precursor for the deposition of zirconium oxide (zirconia) thin films via Atomic Layer Deposition (ALD) technique. Zr-FAMD has a high vapor pressure and displays an exceptionally high thermal stability; it is thus well-suited to be used as a precursor for the deposition of zirconia thin films. Zr-FAMD is a more ideally-suited precursor than tetrakisethylmethylaminozirconium or TEMAZr, which has an equivalent vapor pressure, but is plagued with a rather low thermal stability, limiting its usefulness at high deposition temperatures. Zr-FAMD can be used to deposit zirconia thin films at temperatures as high as 375 °C without evidence of decomposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Perkins, C.M., Triplett, B. B., McIntyre, P. C., Saraswat, K. C., Haukka, S., Tuominen, M., Appl. Phys. Lett., 2001, 78, 23572359.10.1063/1.1362331Google Scholar
2 Balog, M., Schieber, M., Michman, M., and Patai, S., Thin Solid Films, 1977, 47, 109.10.1016/0040-6090(77)90350-9Google Scholar
3 Kukli, K., Ritala, M., Leskela, M., Chem. Vap. Depos., 2000, 6, 297302.10.1002/1521-3862(200011)6:6<297::AID-CVDE297>3.0.CO;2-83.0.CO;2-8>Google Scholar
4 Jeon, T.S., White, J.M., and Kwong, D.L., Appl. Phys. Lett. 2001, 78, 368.10.1063/1.1339994Google Scholar
5 Copel, M., Gribelyuk, M., and Gusev, E., Appl. Phys. Lett, 2000, 76, 436.10.1063/1.125779Google Scholar
6 Kukli, K., Ritala, M., and Leskelä, M., Chem. Vap. Depos. 2000, 6, 297.Google Scholar
7 Niinisto, J., Putkonen, M., Niinisto, L., Kukli, K., Ritala, M., and Leskelä, M., J. Appl. Phys., 2004, 95, 84.10.1063/1.1630696Google Scholar
8 Hausmann, D. M., Kim, E., Becker, J., and Gordon, R. G., Chem. Mater., 2002, 12, 4350.10.1021/cm020357xGoogle Scholar
9 Lee, B., Choi, K. J., Hande, A., Kim, M. J., Wallace, R. M., Kim, J., Senzaki, Y., Shenai, D., Li, H., Rousseau, M., Suydam, J., Microelectronic Engineering, 2009, 86(3), 272276.10.1016/j.mee.2008.03.020Google Scholar
10 Li, H., Shenai, D., Pugh, R., Kim, J., Mater. Res. Soc. Symp. Proc. 2007, 1036E, 1036–M04.Google Scholar
11 Liu, Y., Kim, H., Wang, J. J., Li, H., Gordon, R. G., ECS Transactions 2008, (16)5, 471478.10.1149/1.2981628Google Scholar
12 Wang, H., Wang, J. J., Gordon, R. G., Lehn, J. S., Li, H., Hong, D., Shenai, D., Electrochem. Solid-State Letts., 2009, 12(4), G13–G15.10.1149/1.3074314Google Scholar
13 Li, H., Shenai, D., Mater. Res. Soc. Symp. Proc. 2009, 1036E, 1036–M04.Google Scholar
14 Shenai, D. V., Timmons, M. L., DiCarlo, R. L., Lemnah, G. K., Stennick, R. S., J. Crystal Growth, 2003, 248, 91.10.1016/S0022-0248(02)01854-7Google Scholar