Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-31T23:54:24.171Z Has data issue: false hasContentIssue false

Optical Properties of Cuprous Oxide Nanocrystals

Published online by Cambridge University Press:  15 February 2011

P. J. Rodney
Affiliation:
Institute of Optics and Laboratory for Laser Energetics, University of Rochester, Rochester, NY14627, prod@lle.rochester.edu NSF Center for Photoinduced Charge Transfer, Department of Chemistry, University of Rochester, Rochester, NY 14627.
M. I. Freedhoff
Affiliation:
MRS/OSA 1996–97 Congressional Fellow, Office of Rep. Edward Markey, Washington, DC
A. P. Marchetti
Affiliation:
Imaging Research and Advanced Development, Eastman Kodak Company, Rochester, NY14652–4708. NSF Center for Photoinduced Charge Transfer, Department of Chemistry, University of Rochester, Rochester, NY 14627.
G. L. McLendon
Affiliation:
Department of Chemistry, Princeton University, Princeton, NJ 08544.
P. M. Fauchet
Affiliation:
Department of Electrical Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627 NSF Center for Photoinduced Charge Transfer, Department of Chemistry, University of Rochester, Rochester, NY 14627.
Get access

Abstract

Optical properties of size restricted Cu2O obtained through aqueous and non aqueous preparations are compared with those of commercially available bulk crystals. One method of synthesis involved using polyvinyl alcohol as a restraining agent in an aqueous preparation to produce nanocrystals having diameters with a mean of 11 nm and a standard deviation of 6 nm. Low-temperature spectroscopie studies indicate size restriction effects are manifest by a decrease in exciton luminescence and a 3.0 to 9.0 meV blue shift in 0,0 transition. No noticeable changes in the dynamics were observed for the nanocrystals, indicating no alteration or relaxation of the selection rules for the direct forbidden transition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Dahl, J.P. and Swittendick, A.C., J. Phys. Chem. 28, 931 (1966).Google Scholar
[2]Elliott, R.J., Phys. Rev. 124, 340 (1961).Google Scholar
[3]Stolz, H., Time-Resolved Light Scattering from Excitons (Springer-Verlag, Berlin, 1994), Ch. 7.Google Scholar
[4]Agekyan, V.T., Phys. Stat. Sol. (a), 43, 11 (1977).Google Scholar
[5]Langer, V., Stolz, H. and von der Osten, W., Phys. Rev. B, 51, 2103 (1995).Google Scholar
[6]Gross, E.F. and Kaplyanskii, A.A., Sov. Phys. Solid State, 2, 1518 (1961).Google Scholar
[7]Compann, A. and Cummins, H.Z., Phys. Rev. B, 6, 4753 (1972).Google Scholar
[8]Washington, M.A., Genack, A.Z., Cummins, H.Z., Bruce, R.H., Compaan, A. and Forman, R.A., Phys. Rev. B, 15, 2145 (1977).Google Scholar
[9]Deiss, J.L., Daunois, A. and Nikitine, S., Sol. State Commun. 8, 521 (1970).Google Scholar
[10]Gross, E.F., Sov. Phys. Usp. 5, 195 (1962).Google Scholar
[11]Kellersohn, A., Knözinger, E., Langel, W. and Giersig, M., Adv. Mater. 7, 652 (1995), and references therein.Google Scholar
[12]Hayashi, M. and Katsuki, K., J. Phys. Soc. Japan, 7, 599 (1952).Google Scholar
[13]Grozdanov, I., Mat. Lett. 19, 281 (1994).Google Scholar
[14]Knox, R.S., Theory of Excitons, (Academic Press, New York, 1963), pp. 3759.Google Scholar
[15]Kohn, W. in Solid State Physics Vol 5, edited by Seitz, F. and Tumbull, D. (Academic Press, New York, 1957), pp. 257320.Google Scholar
[16]Goltzené, A. and Schwab, C., in Landolt-Börnstein, New Series Vol 17e, edited by Madelung, O. (Springer, Berlin, 1982), pp. 144151.Google Scholar
[17]Baumeister, P.W., Phys. Rev. 121, 359 (1961).Google Scholar
[18]Forman, R.A., Brower, W.S. and Parker, H.S., Phys. Lett. 36A, 395, (1971).Google Scholar
[19]McFadyen, P. and Matijevic, E., J. Coll. Interface Sci. 44, 95 (1973).Google Scholar
[20]Chen, W., Rehm, J.M., Meyers, C., Freedhoff, M.I., Marchetti, A., McLendon, G., Mol. Cryst. Liq. Cryst. 252, 79, (1994).Google Scholar
[21]Zou, B., Zheng, X., Tang, G., Zhang, G., and Chen, W., Phys. Lett. A, 182, 130 (1993).Google Scholar
[22]Johansson, K.P., Marchetti, A.P. and McLendon, G.L., J. Phys. Chem. 96, 2873 (1992).Google Scholar
[23]Freedhoff, M.I., Marchetti, A.P. and McLendon, G.L. in Microcrystalline and Nanocrystalline Semiconductors, edited by Collins, R.W., Tsai, C.C., Hirose, M., Koch, F., and Brus, L. (Mater. Res. Soc. Proc. 358, Pittsburgh, PA, 1995) pp. 301306 andreferences therein.Google Scholar
[24]Petroff, Y., J. de Physique, 35, C3277 (1974).Google Scholar
[25]Marin, J.L. and Cruz, S.A., Am. J. Phys. 59, 931 (1991).Google Scholar
[26]Marin, J.L. and Cruz, S.A., J. Phys. B: Mol. Opt. Phys. 24, 2899 (1991).Google Scholar