Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-02T03:02:19.337Z Has data issue: false hasContentIssue false

Optimized Three-Color Detector Based on a-SiGe:H Heterojunctions

Published online by Cambridge University Press:  10 February 2011

H. Stiebig
Affiliation:
Forschungszentrum Juelich GmbH, ISI-PV, D-52425 Juelich, Germany
D. Knipp
Affiliation:
Forschungszentrum Juelich GmbH, ISI-PV, D-52425 Juelich, Germany
J. Fölsch
Affiliation:
Forschungszentrum Juelich GmbH, ISI-PV, D-52425 Juelich, Germany
F. Finger
Affiliation:
Forschungszentrum Juelich GmbH, ISI-PV, D-52425 Juelich, Germany
H. Wagner
Affiliation:
Forschungszentrum Juelich GmbH, ISI-PV, D-52425 Juelich, Germany
Get access

Abstract

Bandgap and μτ - (carrier mobility x lifetime) - engineered multi-color nipin detectors with three linear independent curves of the spectral response in a range from 470nm to 670nm are successfully fabricated. The spectral response of nipin structures employed as two terminal devices shifts by the applied voltage. Switching transients after changing the color sensitive voltages under different monochromatic illumination conditions are investigated and can be classified in different cases. In order to improve the understanding of the photo current transients, we have characterized the influence of different illumination conditions on the voltage dependent capacitance behavior. To verify the capacitance measurements, a SPICE model has been developed, which describes the transient behavior of the detector. The simulations are in good agreement with the experimental data and support the explanation of the transient cases after bias switching. Based on these results further optimization criteria to accelerate the transient behavior are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Weisfield, R. L., J. Non-Cryst. Solids 164–166, 771 (1993).Google Scholar
2. Stiebig, H., Giehl, J., Knipp, D., Rieve, P., Böhm, M., Mat. Res. Soc. Symp. Proc., 377, 815 (1995).Google Scholar
3. Cesare, G. de, Irrera, F., Lemmi, F., Palma, F., Tucci, M., Mat. Res. Soc. Symp. Proc., 377, 785 (1995).Google Scholar
4. Topic, M., Smole, F., Groznik, A., Furlan, J., Mat. Res. Soc. Symp. Proc., 377, 779 (1995).Google Scholar
5. Stiebig, H., Böhm, M., J. Non-Cryst. Solids 164–166, 785 (1993).Google Scholar
6. Fölsch, J., Finger, F., Kulessa, T., Siebke, F., Beyer, W., Wagner, H., Mat. Res. Soc. Symp. Proc., 377, 517 (1995).Google Scholar
7. Stiebig, H., Ulrichs, C., Kulessa, T., Fölsch, J., Finger, F., Wagner, H., J. Non-Cryst. Solids (1995) in print.Google Scholar
8. Hegedus, S. S., Fagen, E. A., J. Appl. Phys. 71 (12), 1992.Google Scholar
9. Cesare, G. de, Irrera, F., Lemmi, F., Palma, F., Tucci, M., Mat. Res. Soc. Symp. Proc., 336, 885 (1994).Google Scholar