Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-02T01:09:35.728Z Has data issue: false hasContentIssue false

PECVD grown hydrogenated polymorphous silicon studied using current transient spectroscopies in PIN Diodes

Published online by Cambridge University Press:  01 February 2011

Vibha Tripathi
Affiliation:
Department of Physics, Indian Institute of Technology, Kanpur, India
Y. N. Mohapatra
Affiliation:
Department of Physics, Indian Institute of Technology, Kanpur, India
P. Roca i Cabarrocas
Affiliation:
LPICM (UMR 7647 CNRS), Ecole Polytechnique, 91128 Palaiseau CedexFrance
Get access

Abstract

Hydrogenated polymorphous silicon (pm-Si:H) has steadily emerged as a potential replacement of hydrogenated amorphous silicon. Possible changes in the density of gap states due to the presence of crystallites is of central importance in understanding steady state and dynamic characteristics of devices using these materials. We have studied a-Si:H and pm-Si:H grown by PECVD at optimized conditions through the measurement of the steady state reverse current and their transients in PIN devices. The transients are analyzed using isothermal spectroscopic techniques such as Time Analyzed Transient Spectroscopy (TATS), and high resolution Laplace DLTS as a function of temperature. In case of a-Si:H, we obtain the expected signature of emission from a broad density of states in the form of stretched exponentials. In contrast the corresponding spectra for pm-Si:H are dominated by nearly exponential fast current decay processes with discrete energies between 0.20 and 0.26 eV. It is shown that the study of the density of states by dynamic methods such as transient techniques reveal features not accessible to steady state measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Voyles, P. M., Gerbi, J. E., Treacy, M. M. J., Gibson, J. M., and Abelson, J. R., Phys. Rev. Lett. 86, 5514 (2001).10.1103/PhysRevLett.86.5514Google Scholar
2 Morral, A. Fontcuberta i, Brenot, R., Hamers, E.A.G., Vanderhaghen, R., Cabarrocas, P. Roca i, J. Non-Cryst. Sol. 266-269, 48 (2000)10.1016/S0022-3093(99)00723-1Google Scholar
3 Brinza, M., Adriaenssens, G.J., Cabarrocas, P. Roca i, Thin Solid Films 427, 123 (2003)10.1016/S0040-6090(02)01157-4Google Scholar
4 Meaudre, M., Meaudre, R., Butte, R., Vignoli, S., Longeaud, C., Kleider, J. P., and Cabarrocas, P. Roca i, J. Appl. Phys. 86, 946 (1999)10.1063/1.370829Google Scholar
5 Voz, C., Puigdollers, J., Orpella, A., Alcubilla, R., Morral, A. Fontcuberta i, Tripathi, V., and Cabarrocas, P.Roca i, J. Non-Cryst. Sol., 299-302, 1345 (2002)10.1016/S0022-3093(01)01099-7Google Scholar
6 Poissant, Y., Chatterjee, P., and Cabarrocas, P. Roca i, J. Appl. Phys. 94, 7305 (2003)10.1063/1.1623610Google Scholar
7 Tripathi, V., Mohapatra, Y.N., Islam, M.N., Suendo, V. and Cabarrocas, P. Roca i, Mat. Res. Soc. Symp. Proc, A19.7 (2003)Google Scholar
8 Cabarrocas, P. Roca i, Chévrier, J. B., Huc, J., Lloret, A., Parey, J. Y., and Schmitt, J. P. M., J. Vac. Sci. Technol. A 9, 2331 (1991)10.1116/1.577318Google Scholar
9 Agarwal, Sandeep, Mohapatra, Y. N., and Singh, Vijay A., J. Appl. Phys. 77, 3155 (1995)10.1063/1.358669Google Scholar
10 Giri, P. K. and Mohapatra, Y. N., Phys. Rev. B 62, 2496 (2000)10.1103/PhysRevB.62.2496Google Scholar
11 Dobaczewski, L., Kaczor, P., Hawkins, I.D., and Peaker, A.R., J. Appl. Phys. 76, 194 (1994)10.1063/1.357126Google Scholar
12 Kwon, D., Chen, C C., Cohen, J.D., Jin, H.C, Hollar, E., Robertson, I., and Abelson, J. R., Phys. Rev. B 60 4442, (1999).10.1103/PhysRevB.60.4442Google Scholar
13 Servati, P. and Nathan, A., J. Vac. Sci. Technol. A, 20 3, 1038 (2002).10.1116/1.1472427Google Scholar
14 Street, R. A., Appl. Phys. Lett. 59, 1084 (1991)10.1063/1.106351Google Scholar