Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-17T21:38:52.804Z Has data issue: false hasContentIssue false

Photoelectron spectroscopic investigations of very thin a-Si:H layers

Published online by Cambridge University Press:  01 February 2011

M. Schmidt
Affiliation:
Hahn Meitner Institut Berlin, Abteilung Silizium-Photovoltaik, Kekuléstr. 5, D-12489Berlin, Germany
A. Schoepke
Affiliation:
Hahn Meitner Institut Berlin, Abteilung Silizium-Photovoltaik, Kekuléstr. 5, D-12489Berlin, Germany
O. Milch
Affiliation:
Hahn Meitner Institut Berlin, Abteilung Silizium-Photovoltaik, Kekuléstr. 5, D-12489Berlin, Germany
Th. Lussky
Affiliation:
Hahn Meitner Institut Berlin, Abteilung Silizium-Photovoltaik, Kekuléstr. 5, D-12489Berlin, Germany
W. Fuhs
Affiliation:
Hahn Meitner Institut Berlin, Abteilung Silizium-Photovoltaik, Kekuléstr. 5, D-12489Berlin, Germany
Get access

Abstract

We report on a detailed study on gap-state distribution in thin amorphous silicon layers (a-Si:H) with film thicknesses between 5 nm and 20 nm on c-Si wafers performed by UV excited photoelectron spectroscopy (UV-PES). We measured how the work function, the gap state density, the position of the Fermi-level and the Urbach-energy depend on the layer thickness and the doping level of the ultra thin a-Si:H(n) layers. It was found, that for phosphorous doping the position of the Fermi level saturates at EF–EV=1.47 eV. This is achieved at a gas phase concentration of 10000 ppm PH3 in the SiH4/H2 mixture which was used for the PECVD deposition process. The variation of the doping level from 0 to 20000 ppm PH3 addition results in an increase of the Urbach energy from 65 meV to 101 meV and in an increase of the gap state density at midgap (EV-Ei= 0.86eV) from 3·1018 to 2·1019 cm-3eV-1.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Roedern, B. von, Ley, L., Cardona, M., Smith, F.W., Phil. Mag. B, 40, 433 (1979).Google Scholar
[2] Wiener, K., Ley, L., Phys. Rev. B, 36, 6072 (1987).Google Scholar
[3] Prutton, M., Introduction to Surface Physics p.24, Clarendon press, Oxford 1994, p. 23.Google Scholar
[4] Tanaka, M., Taguchi, M., Matsuyama, T., Sawada, T., Tsuda, S., Nakano, S., Hanafusa, H., Kuwano, Y., Jpn. J. Appl. Phys. 31, 3518 (1992).Google Scholar
[5] Scherff, M.L., Froitzheim, A., Uljaschin, A., Schmidt, M., Fahrner, W.R., Fuhs, W., Proceedings European Photovoltaic Conference, Rome (2002) (in press).Google Scholar
[6] Street, R.A., Hydrogenated amorphous silicon, Cambridge university press, Cambridge 1991; Emis data review series No.19, Amorphous silicon and its alloys, ed. by T. Searl, INSPEC, London 1998.Google Scholar
[7] Spicer, W. E., Phys. Rev. 112, 114 (1958).Google Scholar
[8] Jackson, W.B., Kelso, S. M., Tsai, C.C., Allen, J.W., Oh, S.-J., Phys. Rev. B, 31, 5187 (1985).Google Scholar
[9] Jackson, W.B., Oh, S.-J., Tsai, C.C., Allen, J.W., Phys. Rev. Lett. 53, 1481 (1984).Google Scholar
[10] Sebastiani, M., Gaspare, L.Di, Capellini, G., Bittencourt, C., Evangelisti, F., Phys. Rev. Lett. 75, 3352 (1995).Google Scholar