Published online by Cambridge University Press: 01 February 2011
GaN and AlN thin films were implanted with gadolinium (Gd)atoms and characterized using deep ultra-violet (UV) photoluminescence(PL). The Gd-implanted samples were annealed at temperatures up to 1178K in a flowing N2 gas to facilitate recovery of implantation-related damage. Using the output at 195 nm from a quadrupled Ti:sapphire laser, narrow PL emission was observed at 318 nm from the Gd- implanted AlN thin films. This emission is characteristic of the lowest energy 4f transition of the trivalent Gd ion. A boarder emission band, also centered at 318 nm, was observed under excitation at 266 nm. No PL emission was observed from the Gd-implanted GaN thin films at either the bandedge or due to a 4f transition. The dependence of the UV emission on AlN sample temperature was systematically studied. The peak PL emission intensity decreased by less that a factor of 3 over the temperature range of 10 K to 300 K. Decay transients of the UV emission were measured indicating that the lifetime of this emission is very fast.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.