Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-17T21:31:10.081Z Has data issue: false hasContentIssue false

Porosity-Induced Optical Phonon Engineering in III-V Compounds

Published online by Cambridge University Press:  09 August 2011

I. M. Tiginyanu
Affiliation:
Technical University of Moldova, MD-2004 Chisinau, Moldova, hfmwe103@hrzpub.tudarmstadt. de
G. Irmer
Affiliation:
Technical University of Moldova, MD-2004 Chisinau, Moldova, hfmwe103@hrzpub.tudarmstadt. de
J. Monecke
Affiliation:
TU Bergakademie Freiberg, D-09596 Freiberg, Germany
H. L. Hartnagel
Affiliation:
Technische Universität Darmstadt, D-64283 Darmstadt, Germany
A. Vogt
Affiliation:
Technische Universität Darmstadt, D-64283 Darmstadt, Germany
C. Schwab
Affiliation:
CNRS/PHASE, BP-20, F-67037 Strasbourg Cedex 2, France
J.-J. Grob
Affiliation:
CNRS/PHASE, BP-20, F-67037 Strasbourg Cedex 2, France
Get access

Abstract

New possibilities for modifying the phonon spectra of III-V compounds are evidenced by micro-Raman analysis of porous layers prepared by electrochemical anodization of (111 )Aoriented n-GaP substrates. In particular, a surface-related vibrational mode along with a porosity-induced decoupling between the longitudinal optical (LO) phonon and plasmon are observed. We prove that filling in the pores with other materials (aniline as a first approach) is a promising tool for controlling the surface phonon frequency.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cullis, A. G., Canham, L. T., and Calcott, P. D. J., J. Appl. Phys. 82, 909 (1997).Google Scholar
2. Anedda, A., Serpi, A., Karavanskii, V. A., Tiginyanu, I. M., and Ichizli, V. M., Appl. Phys. Lett. 67, 3316 (1995).Google Scholar
3. Kikuno, E., Amiotti, M., Takizawa, T., and Arai, S., Jpn. J. Appl. Phys. 34, 177 (1995).Google Scholar
4. Erne, B. H., Vanmeakelbergh, D., and Kelly, J. J., J. Electrochem. Soc. 143, 305 (1996).Google Scholar
5. Tiginyanu, I. M., Irmer, G., Monecke, J., and Hartnagel, H. L., Phys. Rev. B 55, 6739 (1997).Google Scholar
6. Schmuki, P., Lockwood, D. J., Labbe, H. J., and Fraser, J. W., Appl. Phys. Lett. 69, 1620 (1996).Google Scholar
7. Ruppin, R. and Englman, R., Rep. Prog. Phys. 33, 144 (1970).Google Scholar
8. Tiginyanu, I. M., Irmer, G., Monecke, J., Vogt, A., and Hartnagel, H. L., Semicond. Sci. & Technol. 12, 491 (1997).Google Scholar
9. Ichizli, V. M., Tiginyanu, I. M., and Hartnagel, H. L., J. Scanning Microscopies 20, 156 (1998).Google Scholar
10. Kravetsky, I. V., private communication.Google Scholar
11. Marin, F. Iranzo, Hamstra, M. A. and Vanmaekelbergh, D., J. Electrochem. Soc. 143, 1137 (1996).Google Scholar
12. Tiginyanu, I. M., Schwab, C., Grob, J.-J., Prevot, B., Hartnagel, H. L., Vogt, A., Irmer, G. and Monecke, J., Appl. Phys. Lett. 71, 3829 (1997).Google Scholar
13. Monecke, J., Phys. Status Solidi b 155, 437 (1989).Google Scholar
14. Hayashi, S. and Kanamori, H., Phys. Rev. B 26, 7097 (1982).Google Scholar
15. Prevot, B. and Wagner, J., Prog. Crystal Growth and Charact. 22, 245 (1991).Google Scholar