Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-16T04:56:32.217Z Has data issue: false hasContentIssue false

Refractory and Silicide Laves Phases

Published online by Cambridge University Press:  25 February 2011

James D. Livingston*
Affiliation:
Massachusetts Institute of Technology Department of Materials Science and Engineering Cambridge, MA 02139
Get access

Abstract

Present knowledge and understanding of deformation mechanisms, mechanical properties, and dislocations in Laves phases are reviewed. Although the amount of study applied to alloys containing these compounds has been relatively limited, several systems with promising high-temperature properties have been identified, including alloys hardened by binary chromides, ternary aluminides, and ternary silicides. Studies of model alloy systems have suggested possible approaches to increase the room-temperature ductility and toughness of Laves phases. Fundamental studies of the effects of stoichiometry, alloying, atom sizes, electronic structures, stacking fault energy, and other variables on dislocation mobility are needed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Villars, P. and Calvert, L.D., Pearson's Handbook of Crystallographic Data for Intermetallic Phases, 2nd Ed., ASM International, Materials Park, Ohio (1991).Google Scholar
2. Pearson, W.B., The Crystal Chemistry and Physics of Metals and Alloys. Wiley-lnterscience, New York (1972).Google Scholar
3. Bardos, D.I., Gupta, K.P., and Beck, P.A., Trans. Met. Soc. AIME 221, 1087 (1961).Google Scholar
4. Mittal, R.C., Si, S.K., and Gupta, K.P., J. Less-Common Metals 60, 75 (1978).CrossRefGoogle Scholar
5. Kumar, K.S., Internat. Mater. Rev. 35 (6), 293 (1990).Google Scholar
6. Livingston, J.D., Phys. Stat. Sol. (a) 131, 415 (1992).CrossRefGoogle Scholar
7. Moran, J.B., Trans. Met. Soc. AIME 233, 1473 (1965).Google Scholar
8. Livingston, J.D., Hall, E.L., and Koch, E.F., MRS Symp. Proc. 133, 243 (1989).Google Scholar
9. Livingston, J.D. and Hall, E.L., J. Mater. Res. 5 (1), 5 (1990).Google Scholar
10. Kubsch, H., Paufler, P., and Schulze, G.E.R., Phys. Stat. Sol.(b) 56 231 (1973); Phys. Stat. Sol. (a) 25, 269 (1974).Google Scholar
11. Paufler, P. and Schulze, G.E.R., Naturwissenschaften 54, 69 (1967); Kristall and Technik 2, 231 (1967).Google Scholar
12. Livingston, J.D. and Hall, E.L., MRS Symp. Proc. 213, 443 (1991).Google Scholar
13. Inoue, K., and Tachikawa, K., IEEE Trans. Magn. MAG–13, 840 (1977).Google Scholar
14. Inoue, K., Kuroda, T., and Tachikawa, K., IEEE Trans. Magn. MAG–15, 635 (1979).Google Scholar
15. Chu, F. and Pope, D.P., Mat. Sci. Eng. A170, 39 (1993).Google Scholar
16. Pope, D.P. and Chu, F., in Structural Intermetallics, Darolia, R., Lewandowski, J.J., Liu, C.T., Martin, P.L., Miracle, D.P., and Nathal, M.V., eds., TMS, Warendale, Pa. (1993) p. 637.Google Scholar
17. Balankin, A.S. and Skorov, D.M., Sov. Phys. Solid State 24 (4), 681 (1982).Google Scholar
18. Balankin, A.S., Yu. Bychkov, F., and Yakovlev, Ye. I., Phys. Met. Metall. 56 (1), 119 (1983).Google Scholar
19. Jain, H.C., Freise, L., and Forker, M., J. Phys.: Condens, Matter 1, 2157 (1989).Google Scholar
20. Chu, F. and Pope, D.P., Scripta Met. et Mater. 28, 331 (1993).Google Scholar
21. Fleischer, R.L., Scripta Met. et Mater. 27, 799 (1992).CrossRefGoogle Scholar
22. Anton, D.L. and Shah, D.M., Proc. Internat. Symp. on Intermetallic Compounds, JIMIS-6, Izumi, O., ed., Japan. Inst. of Metals, Sendai (1991) p. 379.Google Scholar
23. Liu, Y., Livingston, J.D., and Allen, S.M., Met. Trans. 23A, 3303 (1992).Google Scholar
24. Liu, Y., Ph.D. Thesis, Dept. Mat. Sci. and Eng., MIT (1993).Google Scholar
25. Chen, K.C., Allen, S.M., and Livingston, J.D., MRS Symp. Proc. 288, 373 (1992).Google Scholar
26. Anton, D.L. and Shah, D.M., MRS Symp. Proc. 213, 733 (1991).Google Scholar
27. Anton, D.L. and Shah, D.M., Mater. Sci. Eng. A153, 410 (1992).CrossRefGoogle Scholar
28. Takeyama, M. and Liu, C.T., Mater. Sci. Eng. A132, 61 (1991).Google Scholar
29. Liu, C.T., Horton, J.A., and Carmichael, C.A., Proc. 7th Ann. Conf. on Fossil Energy Materials, ORNLIFMP-93/1, Oak Ridge, Tenn. (1993) p. 297.Google Scholar
30. Torterelli, P.F., Carson, L.J., and DeVan, J.H., Mater. Sci. Eng. A132, p. 309.Google Scholar
31. Takasugi, T., Hanada, S., and Miyamoto, K., J. Mater. Res. 8 (12) (1993).Google Scholar
32. Vignoul, G.E., Sanchez, J.M., and Tien, J.K., MRS Symp. Proc. 213, 739 (1991).Google Scholar
33. Grujicic, M., Tangrila, S., Cavin, O.B., Porter, W.D., and Hubbard, C.R., Mater. Sci. Eng. A160, 37 (1993).Google Scholar
34. Thoma, D.J. and Perepezko, J.H., MRS Symp. Proc. 194, 105 (1990).Google Scholar
35. Pan, V.M., Phys. Met. Metallog. 2, 139 (1961).Google Scholar
36. Thoma, D.J. and Perepezko, J.H., Mater. Sci. Eng. A156, 97 (1992).Google Scholar
37. Mazdiyasni, S. and Miracle, D.B., MRS Symp. Proc. 194, 155 (1990).Google Scholar
38. Bewlay, B.P., Sutliff, J.A., Jackson, M.R., and Lipsitt, H.A., submitted to Acta Met. et Mater.Google Scholar
39. Kumar, K.S. and Miracle, D.B., submitted to Intermetallics.Google Scholar
40. Arbiter, W., WADC Technical Report 53-190 (1953).Google Scholar
41. Fleischer, R.L. and Zabala, R.J., Met. Trans. 21A, 2149 (1990).Google Scholar
42. Burany, X.M. and Northwood, D.O., J. Less-Common Metals 170, 27 (1991).Google Scholar
43. Sauthoff, G., Z. Metallk. 80, 337 (1989); Z. Metallk. 81, 855 (1990).Google Scholar
44. Sauthoff, G., in Structural Intermetallics, Darolia, R. et al, eds., TMS, Warrendale, Pa. (1993) p. 845.Google Scholar
45. Wunderlich, W., Machon, L., and Sauthoff, G., Z. Metallk. 83, 679 (1992).Google Scholar
46. Grabke, H.J., Brumm, M., and Steinhorst, M., Mater. Sci. and Technol. 8, 339 (1992).Google Scholar
47. Machon, L., Doctoral Thesis, Technische Hochschule Aachen (1992).Google Scholar
48. Halstead, A. and Rawlings, R.D., J. Mater. Sci. M, 11248, 1693 (1985).Google Scholar
49. Mason, S.E. and Rawlings, R.D., Mater. Sci. and Technol. 5, 180 (1989).CrossRefGoogle Scholar
50. Sprenger, H., Richter, H., and Nickl, J.J., Z. Metallk. 68, 241 (1977).Google Scholar
51. Livingston, J.D., J. Mater. Sci (Letters) 14, 1260 (1979).Google Scholar
52. Pearson, W.B., Acta Cryst. B37, 1174 (1981).Google Scholar
53. Pearson, W.B., Phil. Mag. A46, 379 (1982).Google Scholar
54. Hellner, E. and Pearson, W.B., Z. Kristall. 163, 197 (1983).Google Scholar
55. Johnston, R.L. and Hoffman, R., Z. anorg. allg. Chem. 616, 105 (1992).Google Scholar
56. Ohta, Y. and Pettifor, D.G., J. Phys.: Condens. Matter 2, 8189 (1990).Google Scholar
57. Asano, S. and Ishida, S., J. Phys.: Condensed Matter 1, 8501 (1989).Google Scholar
58. Sinha, A.K., Prog. Mater. Sci. 15, 79 (1970).Google Scholar
59. Kronberg, M.L., Acta Met. 5, 507 (1957); 9, 970 (1961); J. Nucl. Mater. 1, 85 (1959).Google Scholar
60. Kramer, U. and Schulze, G.E., Kristall und Technik 3, 417 (1968).Google Scholar
61. Allen, C.W., Delavignette, P., and Amelinckx, S., Phys. Stat. Sol. (a) 9, 237 (1972).Google Scholar
62. Hazzledine, P.M., Kumar, K.S., Miracle, D.B., and Jackson, A.G., MRS Symp. Proc. 288, 591 (1993).Google Scholar
63. Hazzledine, P.M. and Pirouz, P., Scripta Met et Mater. 28, 1277 (1993).Google Scholar
64. Amelinckx, S., in Dislocations in Solids, Vol. 2, Nabarro, F.R.N., ed., North-Holland, Amsterdam (1979) p. 67.Google Scholar
65. Rosenbaum, H.S., in Deformation Twinning, Reed-Hill, R.F. et al, eds., Gordon and Breach, New York (1964) p. 43.Google Scholar
66. Allen, C.W. and Liao, K.C., Phys. Stat. Sol. (a) 74, 673 (1982).Google Scholar
67. Sprenger, H., Denkinger, M., and Mehrer, H., Proc. DIMAT, Kyoto (1992).Google Scholar