Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-31T23:50:19.263Z Has data issue: false hasContentIssue false

Research Progresses on High Efficiency Amorphous and Microcrystalline Silicon-Based Thin Film Solar Cells

Published online by Cambridge University Press:  01 February 2011

Xinhua Geng
Affiliation:
zhaoygds@nankai.edu.cn, Nankai University, The Institute of Photoelectronic Thin Film Devices and Technology, Tianjin, China
Ying Zhao
Affiliation:
xdzhang@nankai.edu.cn, Nankai University, The Institute of Photoelectronic Thin Film Devices and Technology, Tianjin, China
Xiandan Zhang
Affiliation:
guofu_hou@yahoo.com.cn, Nankai University, The Institute of Photoelectronic Thin Film Devices and Technology, Tianjin, China
Guofu Hou
Affiliation:
hzren@nankai.edu.cn, Nankai University, The Institute of Photoelectronic Thin Film Devices and Technology, Tianjin, China
Huizhi Ren
Affiliation:
gehong@mail.nankai.edu.cn, Nankai University, The Institute of Photoelectronic Thin Film Devices and Technology, Tianjin, China
Hong Ge
Affiliation:
chenxinliang@nankai.edu.cn, Nankai University, The Institute of Photoelectronic Thin Film Devices and Technology, Tianjin, China
Xinliang Chen
Affiliation:
xinhuageng@nankai.edu.cn, Nankai University, The Institute of Photoelectronic Thin Film Devices and Technology, Tianjin, China
Get access

Abstract

This paper reviews our research progresses of hydrogenated amorphous silicon (a-Si:H) and microcrystalline (μc-Si:H) based thin film solar cells. It coves the three areas of high efficiency, low cost process, and large-area proto-type multi-chamber system design and solar module deposition. With an innovative VHF power profiling technique, we have effectively controlled the crystalline evolution and made uniform μc-Si:H materials along the growth direction, which was used as the intrinsic layers of pin solar cells. We attained a 9.36% efficiency with a μc-Si:H single-junction cell structure. We have successfully resolved the cross-contamination issue in a single-chamber system and demonstrated the feasibility of using single-chamber process for manufacturing. We designed and built a large-area multi-chamber VHF system, which is used for depositing a-Si:H/μc-Si:H micromorph tandem modules on 0.79-m2 glass substrates. Preliminary module efficiency has exceeded 8%.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Meier, J., Vallat-Sauvain, E., Dubail, S., Kroll, U., Dubail, J., Golay, S., Feitknecht, L., Torres, P., Fay, S., Fischer, D., and Shah, A., Sol. Energy Mater. Sol. Cells 66, 73 (2001).Google Scholar
2 Meier, J., Kroll, U., Benagli, S., Hötzel, J., Bailat, J., Borrello, D., Spitznagel, J., Castensl, L., Vallat-Sauvain, E., Dehbozorgi, B., Kluth, O., Kravets, R., Kupich, M., Ellert, C., Bakehe, S., Goldbach, H., Keller, M., Roschek, T., Gossla, M., Knauss, H., Eisenhammer, T., Henz, J., Proceedings of 23rd European Photovoltaic Solar Energy Conference, (2008) p.2057.Google Scholar
3 Vetterl, O., Lambertz, A., Dasgupta, A., Finger, F., Rech, B., Kluth, O., Wagner, H., Solar Energy Materials & Solar Cells 66, 345 (2001).Google Scholar
4 Yan, B., Yue, G., Yang, J., Banerjee, A., and Guha, S., Mat. Res. Soc. Symp. Proc. 762, 309 (2003).Google Scholar
5 Kalache, B., Kosarev, A. I., Vanderhaghen, R., and Cabarrocas, P. Roca. I., J. Appl. Phys. 93, 1262 (2003).Google Scholar
6 Kondo, M., Fukawa, M., Guo, L., and Matsuda, A., J. Non-Cryst. Solids 266–269, 84 (2000).Google Scholar
7 Hou, G., Han, X., Li, G., Zhang, X., Cai, N., Wei, C., Zhao, Y., and Geng, X., Technical Digest of the 17th International Photovoltaic Science and Engineering Conference (Fukuoka, Japan, 2007), p.1112.Google Scholar
8 Das, U. K., Centurioni, E., Morrison, S., and Madan, A., Proceedings of 3rd World Conference Photovoltaic Energy Conversion (Osaka, Japan, 2003), p.1776.Google Scholar
9 Catalano, A. and Wood, G., J. Appl. Phys. 63, 1220 (1988).Google Scholar
10 Lee, S.C., J. Appl. Phys. 55, 4426 (1984).Google Scholar
11 Klein, S., Rohde, M., Stolley, T., Schwanitz, K., and Buschbaum, S., Proceedings of 23rd European Photovoltaic Solar Energy Conference, (2008), p. 2088.Google Scholar