No CrossRef data available.
Article contents
Residual Stress in Sputtered Silicon Oxycarbide Thin Films
Published online by Cambridge University Press: 20 January 2011
Abstract
Silicon carbide (SiC) has received increasing attention on the integration of microelectro-mechanical system (MEMS) due to its excellent mechanical and chemical stability at elevated temperatures. However, the deposition process of SiC thin films tends to induce relative large residual stress. In this work, the relative low stress material silicon oxide was added into SiC by RF magnetron co-sputtering to form silicon oxycarbide (SiOC) composite films. The composition of the films was characterized by Energy dispersive X-ray (EDX) analysis. The Young’s modulus and hardness of the films were measured by nanoindentation technique. The influence of oxygen/carbon ratio and rapid thermal annealing (RTA) temperature on the residual stress of the composite films was investigated by film-substrate curvature measurement using the Stoney’s equation. By choosing the appropriate composition and post processing, a film with relative low residual stress could be obtained.
Keywords
- Type
- Research Article
- Information
- MRS Online Proceedings Library (OPL) , Volume 1299: Symposium S – Microelectromechanical Systems—Materials and Devices IV , 2011 , mrsf10-1299-s09-10
- Copyright
- Copyright © Materials Research Society 2011