Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-16T09:29:55.786Z Has data issue: false hasContentIssue false

Routes to High‐Tc Superconducting Tl‐Ba‐Ca‐Cu‐O Films Using Organometallic Chemical Vapor Deposition

Published online by Cambridge University Press:  28 February 2011

Darrin S. Richesonw
Affiliation:
Department of Chemistry
Lauren M. Tonge
Affiliation:
Department of Chemistry
Jing Zhao
Affiliation:
Department of Materials Science and Engineering
Jiming Zhang
Affiliation:
Department of Materials Science and Engineering
Henry O. Marcy
Affiliation:
Department of Electrical Engineering and Computer Science
Tobin J. Marks
Affiliation:
Department of Chemistry Authors to whom correspondence should be addressed Science and Technology Center for Superconductivity and the Materials Research Center Northwestern University, Evanston IL 60208.
Bruce W. Wessels
Affiliation:
Department of Materials Science and Engineering Authors to whom correspondence should be addressed Science and Technology Center for Superconductivity and the Materials Research Center Northwestern University, Evanston IL 60208.
Carl R. Kannewurfcc'd
Affiliation:
Department of Electrical Engineering and Computer Science Authors to whom correspondence should be addressed Science and Technology Center for Superconductivity and the Materials Research Center Northwestern University, Evanston IL 60208.
Get access

Abstract

Films of the Tl‐Ba‐Ca‐Cu‐O high‐Tc superconductor can be prepared by several organometallic chemical vapor deposition routes. Two of these involve Ba‐Ca‐Cu‐0 films that are first prepared using the volatile metal‐organic precursors Ba(heptafluorodimethyloctanedionate)2, Ca(dipivaloylmethanate)2, and Cu(acetylacetonate)2‐ Deposition is carried out at a pressure of 5 Torr with argon as the carrier gas and water vapor as the reactant gas. Thallium is next incorporated into these films either by organometallic chemical vapor deposition using Tl(cyclopentadienide) as the source, or by vapor diffusion using bulk Tl‐Ba‐Ca‐Cu‐O as the source. Thallium deposition is carried out at atmospheric pressure with an argon carrier and water‐saturated oxygen reactant gas, followed by rapid thermal annealing. Both procedures yield films that consist primarily of the TlBa2Ca2Cu3Ox phase, have preferential orientation of the Cu‐O planes parallel to the substrate surface, and exhibit onset of superconductivity at ∼125 K with zero resistance by 100 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ichikawa, Y., Adachi, H., Setsune, K., Hatta, S., Hirochi, K., and Wasa, K., Appl. Phys. Lett. 53, 919 (1988).Google Scholar
2 Nakao, M., Yuasa, R., Nemoto, M., Kuhawara, H., Mukaida, H., and Mizukami, A., Jpn. J. Appl. Phys. 27, L849 (1988).Google Scholar
3 Lee, W. Y., Lee, V. Y., Salem, J., Huang, T. C., Savoy, R., Bullock, D. C., and Parkin, S. S. P., Appl. Phys. Lett. 53, 329 (1988).Google Scholar
4 Shih, I. and Qui, C. X., Appl. Phys. Lett. 53, 523 (1988).Google Scholar
5 Ginley, D. S., Kwak, J. F., Hellmer, R. P., Baughman, R. J., Venturi, E. L., and Morosin, B., Appl. Phys. Lett. 53, 406 (1988).Google Scholar
6 Ginley, D. S., Kwak, J. F., Hellmer, R. P., Baughman, R. J., Venturi, E. L., Mitchell, M. A., and Morosin, B., Physica C 156, 592 (1988).Google Scholar
7 Johs, B., Thompson, D., Ianno, N. J., Woolam, J. A., Liou, S. H., Hermann, A. M., Zheng, Z. Z., Kiebl, W., Shams, Q., Fei, X., Sheng, L., and Liu, Y. H., Appl. Phys. Lett. 54, 1810 (1989).Google Scholar
8 Zheng, Z. Z. and Hermann, A. M., Nature, 332, 55 and 138 (1988).Google Scholar
9 Kondok, S., Ando, Y., Onoda, M., Sato, M., and Akimitsu, J., Solid State Commun. 65, 1329 (1988).Google Scholar
10 Parkin, S. S. P., Lee, V. Y., Engler, E. M., Nazzal, A. I., Huang, T. C., Gorman, G., Savoy, R., and Beyers, R., Phys. Rev. Lett. 60, 2539 (1988).Google Scholar
11 Schuller, I. K. and Jorgensen, J. D., Mater. Res. Bull. XIV, 27 (1989), and references therein.Google Scholar
12 Sleight, A. W., Subramanian, M. A., and Torardi, C. C., Mater. Res. Bull. XIV, 45 (1989), and references therein.Google Scholar
13 Cuellar, E. A., Miller, S. S., Marks, T. J., and Weitz, E., J. Am. Chem. Soc. 105, 4580 (1983).Google Scholar
14 Richeson, D. S., Tonge, L. M., Zhao, J., Zhang, J., Marcy, H. O., Marks, T. J., Wessels, B. W., and Kannewurf, C. R., Appl. Phys. Lett. 54, 2154 (1989).Google Scholar
15 Zhao, J., Dahmen, K.‐H., Marcy, H. O., Tonge, L. M., Wessels, B. W., Marks, T. J., and Kannewurf, C. R., Appl. Phys. Lett. 53, 1750 (1988)..Google Scholar
16 Zhang, J., Zhao, J., Marcy, H. O., Tonge, L. M., Wessels, B. W., Marks, T. J., and Kannewurf, C. R., Appl. Phys. Lett. 54, 1166 (1989)..Google Scholar
17 Cubiccioti, D. and Keneshea, F. J., J. Phys. Chem. 71, 808 (1967).Google Scholar
18 Cubicciotti, D., High Temp. Sci. 2, 213 (1970).Google Scholar
19 Lyding, J. W., Marcy, H. O., Marks, T. J., and Kannewurf, C. R., IEEE Trans. Instrum. Meas. 37, 76 (1988).Google Scholar
20 Marcy, H. O., Marks, T. J., Kannewurf, C. R., manuscript in preparation.Google Scholar
21 Alcacer, L., Almeida, M., Braun, U., Goncalves, A. P., Green, S. M., Lopes, E. B., Luo, H. L., and Politis, C., Mod. Phys. Lett. B 2, 923 (1988).Google Scholar