Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-31T20:36:36.511Z Has data issue: false hasContentIssue false

Silicon Surface Treatments and their Impact on Chemical Composition and Morphology

Published online by Cambridge University Press:  21 February 2011

Dieter GRÄF
Affiliation:
Wacker-Chemitronic GmbH, Research Center, P.O. Box 1140, D-8263 Burghausen, Germany
Michael Brohl
Affiliation:
Wacker-Chemitronic GmbH, Research Center, P.O. Box 1140, D-8263 Burghausen, Germany
Susanne Bauer-Mayer
Affiliation:
Wacker-Chemitronic GmbH, Research Center, P.O. Box 1140, D-8263 Burghausen, Germany
Andreas Ehlert
Affiliation:
Wacker-Chemitronic GmbH, Research Center, P.O. Box 1140, D-8263 Burghausen, Germany
Peter Wagner
Affiliation:
Wacker-Chemitronic GmbH, Research Center, P.O. Box 1140, D-8263 Burghausen, Germany
Anton Schnegg
Affiliation:
Wacker-Chemitronic GmbH, Research Center, P.O. Box 1140, D-8263 Burghausen, Germany
Get access

Abstract

The smoothness of silicon wafer surfaces is defined by polishing. Subsequent cleaning steps take account of surface conditioning of the wafer and meet the demands for low metal surface contamination as well as low particle level. Wet chemical treatments, however, can also influence surface morphology. The coexistence of oxidation and etching of the Si surface has a pronounced feedback on the resulting surface roughness. This holds in particular for SC1 cleaning solutions and modified HF treatments. Buffered HF enhances surface roughness of the technological important Si (100) surface, in contrast to a smoothening effect on Si (111). The same holds for other modifications of HF treatments with an enhanced oxidation behaviour involved, like HF-H2O2 solutions. In parallel with the change of surface morphology and with the increase of surface roughness an increase in Light Point Defect (LPD) densities is also found. Small LPDs are predominantly not particle related, depend on the respective silicon substrate material and were not found to influence gate oxide integrity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kern, W. and Puotinen, D.A., RCA Rev. 31, 187 (1970).Google Scholar
2. Takizawa, R. and Ohsawa, A., 1. International Symp. on Cleaning Tech. in Semicond. Device Manuf., Ext. Abst. of 176 ECS Meeting (1989) 564.Google Scholar
3. Mertens, P.W., Meuris, M., Verhaverbeke, S., Heyns, M.M., Schnegg, A., Grif, D., and Philipossian, A., 38th Annual Technical Meeting of IES, 475 (1992).Google Scholar
4. Yablonovitch, E., Allara, D. L., Chang, C. C., Gmitter, T., and Bright, T. B., Phys. Rev. Lett. 57, 249 (1986).Google Scholar
5. Grundner, M. and Jacob, H., Appl. Phys. A 39, 73 (1986).CrossRefGoogle Scholar
6. Burrows, V. A., Chabal, Y. J., Higashi, G. S., Raghavachari, K., and Christman, S. B., Appl. Phys. Lett. 53, 998 (1988).Google Scholar
7. Dumas, P. and Chabal, Y. J., Chem. Phys. Lett. 181, 537 (1991).Google Scholar
8. Morita, M., Ohmi, T., Hasegawa, E., Kawakami, M., and Suma, K., Appl. Phys. Lett. 55, 562 (1989).Google Scholar
9. Griif, D., Grundner, M., Schulz, R., and Muhlhoff, L., J. Appl. Phys. 68, 5155 (1990).Google Scholar
10. Kiiper, W. and Maex, K., presented at the Semicon, Zfirich 1991.Google Scholar
11. Shimono, T. and Tsuji, M., Extended Abstracts of 179th ECS Meeting, Washington (1991), 278 Google Scholar
12. Ohmi, T., Miyashita, M., and Imaoka, T., Microcontamination Conference Proceedings (1991), 491 Google Scholar
13. Prigge, H., Gerlach, P., Hahn, P.O., Schnegg, A., and Jacob, H., J. Electrochem. Soc. 138, 1385 (1991).Google Scholar
14. Ibach, H., Bruchmann, D., Wagner, H., Appl. Phys. A 29, 113 (1982).Google Scholar
15. Schaefer, I. A., Stucki, F., Frankel, D.J., Göpel, W., and Lapeyre, G.J., J. Vac. Sci. Technol. B 2, 359 (1984).Google Scholar
16. Froitzheim, H., Köhler, U., and Lammering, H., Surf. Sci. 149, 537 (1985).Google Scholar
17. Graf, D., Grundner, M., and Schulz, R., J. Vac. Sci. Technol. A 7, 808 (1989).Google Scholar
18. Takahagi, T., Nagai, I., Ishitani, A., Kuroda, H., and Nagasawa, Y., J. Appl. Phys. 64, 3516 (1988).Google Scholar
19. Sakurai, M., Ryuta, J., Morita, E., Tanaka, K., Yoshimi, T., and Shimanuki, Y., Extended Abstracts of ECS Meeting 1990, p. 710.Google Scholar
20. Grundner, M., Grif, D., Hahn, P.O. and Schnegg, A., Solid State Technology, 69 (1991).Google Scholar
21. Mende, G., Finster, J., Flamm, D., and Schulze, D., Surf. Sci. 128, 169 (1983).CrossRefGoogle Scholar
22. Morita, M., Ohmi, T., Hasegawa, E., and Teramoto, A., Jpn. J. Appl. Phys. 29, L2392 (1990).CrossRefGoogle Scholar
23. Grnf, D., Grundner, M., Miihlhoff, L., and Dellith, M., J. Appl. Phys. 69, 7620 (1991).Google Scholar
24. Higashi, G.S., Chabal, Y.J., Trucks, G.W., and Raghavachari, K., Appl. Phys. Lett. 56, 656 (1990).Google Scholar
25. Dumas, P. and Chabal, Y. J., J. Vac. Sci. Technol. A 10, 2160 (1992).Google Scholar
26. Grif, D., Bauer-Mayer, S., and Schnegg, A., J. Vac. Sci. Technol., to be published.Google Scholar
27. Kim, Y. and Lieber, C. M., J. Am. Chem. Soc. 113, 2333 (1991).Google Scholar
28. Hessel, H.E., Feltz, A., Reiter, M., Memmert, U., and Behm, R.J., Chem. Phys. Lett. 186, 275 (1991).Google Scholar
29. Itaya, K., Sugawara, R., Morita, Y., and Tokumoto, H., Appl. Phys. Lett. 60, 2534 (1992).Google Scholar
30. Trucks, G.W., Raghavachari, K., Higashi, G.S., and Chabal, Y.J., Phys. Rev. Lett. 65, 504 (1990).Google Scholar
31. Steigmeier, E.F. and Auderset, H., Appl. Phys. A50 (1990) 531.Google Scholar
32. Abe, T., Steigmeier, E.F., Hagleitner, W., and Pidduck, A.J., Jpn. J. Appl. Phys. 31 (1992) 721.Google Scholar
33. Graf, D., Bauer-Mayer, S., Brohl, M., and Schnegg, A., 1. International Symposium on Ultra Clean Processing of Silicon Surfaces, Leuven (1992).Google Scholar
34. Ryuta, J., Morita, E., Tanaka, T., and Shimanuki, Y., Jpn. J. Appl. Phys. 29 L1947 (1990).Google Scholar
35. Klingshirn, H., and Gerlach, P., UCS 3, 407 (1991).Google Scholar
36. Ryuta, J., Morita, E., Tanaka, T., and Shimanuki, Y., Jpn. J. Appl. Phys. 31 L293 (1992).CrossRefGoogle Scholar