Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-02T11:13:09.624Z Has data issue: false hasContentIssue false

Surface Stress, Morphological Development, and Dislocation Nucleation During Strained-Layer Epitaxy

Published online by Cambridge University Press:  15 February 2011

D. E. Jesson
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6030
S. J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6030
J.-M. Baribeau
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa K1A OR6, Canada
D. C. Houghton
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa K1A OR6, Canada
Get access

Abstract

Utilizing Marker layer experiments and Z-contrast imaging, we have observed the formation of surface cusps during SixGe1−x alloy growth. The formation of cusps can be understood in terms of stress-driven surface diffusion, and we consider the large stress build-up at the cusp tip as a potential source for the nucleation of misfit dislocations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Asaro, R. J. and Tiller, W. A., Metall. Trans. 3, 1789 (1972).CrossRefGoogle Scholar
[2] Grinfeld, M. A., Sov. Phys. Dokl. 31, 831 (1986).Google Scholar
[3] Srolovitz, D. J., Acta. Metall. 37, 621 (1989).CrossRefGoogle Scholar
[4] Gao, H., J. Mech. Phys. Solids 39, 443 (1991).CrossRefGoogle Scholar
[5] Jesson, D. E., Pennycook, S. J., Baribeau, J.-M., and Houghton, D. C., Phys. Rev. Lett. 71, 1744 (1993).CrossRefGoogle Scholar
[6] Pennycook, S. J. and Jesson, D. E., Phys. Rev. Lett. 64, 1943 (1990).CrossRefGoogle Scholar
[7] Spencer, B. J., Voorhees, P. W., and Davies, S. H., J. Appl. Phys. 73, 4955 (1993).CrossRefGoogle Scholar
[8] Jesson, D. E., Pennycook, S. J., Baribeau, J.-M., and Houghton, D. C., MRS Symp. Proc. 312, 47 (1993).CrossRefGoogle Scholar
[9] Yang, W. H. and Srolovitz, D. J., Phys. Rev. Lett. 71, 1593 (1993).CrossRefGoogle Scholar
[10] Spencer, B. J. and Meiron, D. I., submitted to Acta. Metall.Google Scholar
[11] Gao, H. (private communication).Google Scholar
[12] See, for example, Tetelman, A. S. and McEvily, A. J., Fracture of Structural Materials, John Wiley and Sons, Inc., New York, London, Sydney, 1967.Google Scholar
[13] See, for example, Knott, J. F., Fundamentals of Fracture Mechanics, John Wiley and Sons, New York, Toronto, 1973, p. 57.Google Scholar
[14] Kamat, S. V. and Hirth, J. P., J. Appl. Phys. 67, 6844 (1990).CrossRefGoogle Scholar
[15] Pidduck, A. J., Robbins, D. J., Cullis, A. G., Leong, W. Y., and Pitt, A. M., Thin Solid Films 222, 78 (1992).CrossRefGoogle Scholar
[16] Rice, J. R. and Thomson, R., Philos. Mag. 29, 73 (1974).CrossRefGoogle Scholar