Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-14T07:35:35.124Z Has data issue: false hasContentIssue false

Synthesis of Silicon Nanowires and their Heterostructures by Thermal Chemical Vapor Deposition

Published online by Cambridge University Press:  15 February 2011

Woo-Sung Jang
Affiliation:
Department of Chemistry, Korea University, Jochiwon 339-700 Korea;
Seung Yong Bae
Affiliation:
Department of Chemistry, Korea University, Jochiwon 339-700 Korea;
Jeunghee Park
Affiliation:
Department of Chemistry, Korea University, Jochiwon 339-700 Korea;
Get access

Abstract

The Si nanowires were synthesized using a novel catalytic thermal reaction under Ar flow. The average diameter is in the range of 50 ∼ 100 nm. They consist of defect-free single-crystalline cubic structure with the [111] growth direction. The thickness of amorphous oxide outer layers was controllable by growth conditions or surface treatment. In order to protect the oxidation, the Si nanowires were coated with boron nitride layer by the reaction of boron oxide mixture with NH3.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wang, Z.L., Pan, Z.W., Adv. Mater. 14, 1029 (2002)Google Scholar
2 Sha, J., Niu, J.J., Ma, X.Y., Xu, J., Zhang, X.B., Yang, Q., Yang, D.R., Adv. Mater. 14, 1219 (2002)Google Scholar
3 Niu, J.J., Sha, J., Wang, Y.W., Ma, X.Y., Yang, D.R., Microelectron. Eng. 66, 65 (2003)Google Scholar
4 Wang, N., Tang, Y.H., Zhang, Y.F., Lee, C.S., Bello, I., Lee, S.T., Chem. Phys. Lett. 299, 237 (1999)Google Scholar
5 Cui, Y., Lieber, C.M., Science 291, 851 (2001)Google Scholar
6 Nihonyanagi, S., Kanemitsa, Y., Physica E 17, 183 (2003)Google Scholar
7 Clement, N., Tonneau, D., Dallaporta, H., Bouchiat, V., Fraboulet, D., Mariole, D., Gautier, J., Safaror, V., Physica E 13, 999 (2002)Google Scholar
8 Shi, W.S., Peng, H.Y., Zheng, Y.F., Wang, N., Shang, N.G., Pan, Z.W., Lee, C.S., Lee, S.T., Adv. Mater. 12, 1343 (2000)Google Scholar
9 Zhang, R.Q., Chu, T.S., Cheung, H.F., Wang, N., Lee, S.T., Mater. Sci. Eng. C 16, 31 (2001)Google Scholar
10 Kamins, T.I., Williams, R. Stanley, Hesjedal, T., Harris, J.S., Physica E 13, 995 (2002)Google Scholar
11 Yu, D.P., Bai, Z.G., Ding, Y., Hang, Q.L., Zhang, H.Z., Wang, J.J., Zou, Y.H., Qian, W., Xiong, G.C., Zhou, H.T., Feng, S.Q., Appl. Phys. Lett. 72, 3458 (1998)Google Scholar
12 Zhang, Y.J., Zhang, Q., Wang, N.L., Yan, Y.J., Zhou, H.H., Zhu, J., J. Cryst. Growth 226, 185 (2001)Google Scholar
13 Lew, K.K., Redwing, J.M., J. Cryst. Growth 254, 14 (2003)Google Scholar
14 Lu, M., Li, M.K., Kong, L.B., Guo, X.Y., Li, H.L., Chem. Phys. Lett. 374, 542 (2003)Google Scholar
15 Zhang, X.Y., Zhang, L.D., Meng, G.W., Li, G.H., Phillipp, N.Y.J., Phillipp, F., Adv. Mater. 13 1238 (2001).Google Scholar
16 Niu, J.J., Sha, J., Ma, X.Y., Xu, J., Yang, D.R., Chem. Phys. Lett. 367, 528 (2003)Google Scholar