Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-02T01:27:33.635Z Has data issue: false hasContentIssue false

Temperature Dependent Line-Shape of the Silicon Dangling Bond EPR-Resonance in Polycrystalline Silicon

Published online by Cambridge University Press:  15 February 2011

N. H. Nickel
Affiliation:
Hahn-Meitner-Institut Berlin, Rudower Chaussee 5, 12489 Berlin, F. R., Germany.
E. A. Schiff
Affiliation:
Department of Physics, Syracuse University, Syracuse, New York 13244, USA.
Get access

Abstract

The temperature dependence of the silicon dangling-bond resonance in polycrystalline (poly-Si) and amorphous silicon (a-Si:H) was measured. At room temperature, electron paramagnetic resonance (EPR) measurements reveal an isotropie g-value of 2.0055 and a line width of 6.5 and 6.1 G for Si dangling-bonds in a-Si:H and poly-Si, respectively. In both materials spin density and g-value are independent of temperature. While in a-Si:H the width of the resonance did not change with temperature, poly-Si exhibits a remarkable T dependence of ΔHpp. In unpassivated poly-Si a pronounced decrease of ΔHpp is observed for temperatures above 300 K. At 384 K ΔHpp reaches a minimum of 5.1 G, then increases to 6.1 G at 460 K, and eventually decreases to 4.6 G at 530 K. In hydrogenated poly-Si ΔHpp decreases monotonically above 425 K. The decrease of ΔHpp is attributed to electron hopping causing motional narrowing. An average hopping distance of 15 and 17.5 Å was estimated for unhydrogenated and H passivated poly-Si, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Johnson, N. M., Biegelsen, D. K., and Moyer, M. D., Appl. Phys. Lett. 40, 882 (1982).Google Scholar
2Kamins, T. I. and Marcoux, P. J., IEEE Electron Devices Lett. EDL- 1, 159 (1980).Google Scholar
3Nickel, N. H., Johnson, N. M., and Jackson, W. B., Appl. Phys. Lett. 62, 3285 (1993).Google Scholar
4Brodsky, M. H. and Title, R. S., Phys. Rev. Lett. 23, 581 (1969).Google Scholar
5Biegelsen, D. K., Johnson, N. M., Stutzmann, M., Pointdexter, E. H., and Caplan, P. J., Appl. Surf. Science 22/23, 879 (1985).Google Scholar
6Watkins, G. D. and Corbett, J. W., Phys. Rev. 138, A 543 (1965).Google Scholar
7Dersch, H., Stuke, J., and Beichler, J., Appl. Phys. Lett. 36, 456 (1981).Google Scholar
8Thomas, P. A., Brodsky, M. H., Kaplan, D., and Lepine, D., Phys. Rev. B18, 3059 (1978).Google Scholar
9Gaczi, P. J. and Booth, D., Solar Energy Materials 4, 279 (1981).Google Scholar
10Mott, N. F., J. Non-Cryst. Solids 1, 1 (1968).Google Scholar
11Biegelsen, D. K. and Stutzmann, M., Phys. Rev. B33, 3006 (1986).Google Scholar
12Slichter, C. P., Principles of Magnetic Resonance, 3rd Edition (Springer, Berlin 1990).Google Scholar
13Nickel, N. H. and Schiff, E. A., unpublished.Google Scholar