Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-06T07:08:58.462Z Has data issue: false hasContentIssue false

UHV Preparation and In-Situ Surface Analysis of MNFE/Nife Exchange Structures: Interfacial Impurity Incorporation

Published online by Cambridge University Press:  03 September 2012

Susan L. Cohen
Affiliation:
IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
John M. Baker
Affiliation:
IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
Michael A. Russak
Affiliation:
IBM-ADSTAR, 5600 Cottle Road, San Jose, CA 95193
Gerald J. Scilla
Affiliation:
IBM Technology Products, 1000 River Road, Essex Junction, VT 05452
Cherngye Hwang
Affiliation:
IBM-ADSTAR, 5600 Cottle Road, San Jose, CA 95193
Stephen M. Rossnagel
Affiliation:
IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
Get access

Abstract

MnFe/NiFe exchange structures have been prepared in an ultra-high vacuum sputtering/surface analysis system. Controlled introduction of residual gas impurities such as O2 and H2O at the MnFe/NiFe interface is studied by in-situ x-ray photoelectron spectroscopy (XPS) and the exchange structures are magnetically characterized. Due to the extreme reactivity of the NiFe surface towards O2, the exchange coupling is severely degraded by only small exposures of this molecule to the NiFe surface. In contrast, H2O does not oxidize the NiFe surface and therefore can be tolerated in greater quantities in the sputtering chamber without detrimental loss of exchange. This understanding of the basic surface chemistry of the MnFe and NiFe surfaces can lead to improved sputtering practices in actual manufacturing applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

1 Hempstead, R. D., Krongelb, S. and Thompson, D. A., IEEE Trans. Magnet. MAG-14, 521–3 (1978).Google Scholar
2 Tsang, C., Heiman, N. and Lee, K., J. Appl. Phys. 52, 2471–3 (1981).Google Scholar
3 Tsang, C. and Lee, K., J. Appl. Phys. 53, 2605–7 (1982).Google Scholar
4 Yelon, A., Physics of Thin Films 6, 205300 (1971).Google Scholar
5 Ishikawa, Y. and Endoh, Y., J. Phys. Soc. Jap. 23, 205 (1967).Google Scholar
6 Hashimoto, T. and Ishikawa, Y., J. Phys. Soc. Jap. 23, 213 (1967).Google Scholar
7 Ishikawa, Y., Sekine, H. and Yamada, K., J. Phys. Soc. Jap. 37, 874 (1974).Google Scholar
8 Kimball, C., Gerber, W. D. and Arroti, A., J. Appl. Phys. 34, 1046 (1963).Google Scholar
9 Endoh, Y. and Ishikawa, Y., J. Phys. Soc. Jap. 30, 1614 (1971).Google Scholar
10 Sumiyama, K., Ohshima, N. and Nakamura, Y., Phys. Stat. Sol. 98, 229 (1986).Google Scholar
11 Hwang, C., Geiss, R. and Howard, J. K., J. Appl. Phys. 64 (10), 6115 (1988).Google Scholar
12 Russak, M. A., Rossnagel, S. M., Cohen, S. L., McGuire, T. R., Scilla, G. J., Jahnes, C. V., Baker, J.M. and Cuomo, J. J., J. Electrochem. Soc. 136 (6), 1793 (1989).Google Scholar
13 Cohen, S. L., Russak, M. A., Baker, J. M., McGuire, T. R., Scilla, G. J. and Rossnagel, S. M., J. Vac. Sci. Tech. A 6 (3), 918 (1988).Google Scholar
14 Poliak, R. A. and Bajorek, C. H., J. Appl. Phys. 46, 1382–88 (1975).Google Scholar
15 Scofield, J. H., J. Elec. Spectrosc. Relat. Phenom. 8, 129137 (1976).Google Scholar
16 Brundle, C. R., Silverman, E. and Madix, R. J., J. Vac. Sci. Tech. 16, 474 (1979).Google Scholar
17 Norton, P. R., Tapping, R. L. and Goodale, J. W., Surf. Sci. 65, 1336 (1977).Google Scholar
18 Benndorf, C., Nóbl, C., Rusenberg, M. and Thieme, F., Surf. Sci. 111, 87101 (1981).Google Scholar
19 Roberts, M. W. and Wood, P. R., J. Elec. Spectr. Relat. Phenom. 11, 431–37 (1977).Google Scholar
20 Allegranza, O. and Chen, M. -., Paper EB02, 36th Conference on magnetism and magnetic materials (Dec 1–4, 1992).Google Scholar