Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-01T12:32:16.244Z Has data issue: false hasContentIssue false

A review and evaluation of study design considerations for omega-3 fatty acid supplementation trials in physically trained participants

Published online by Cambridge University Press:  09 January 2023

Ryan Anthony
Affiliation:
Graduate School of Medicine, University of Wollongong, Wollongong, Australia Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia
Michael J. Macartney
Affiliation:
Graduate School of Medicine, University of Wollongong, Wollongong, Australia Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia
Jeffery L. Heileson
Affiliation:
Department of Health, Human Performance and Recreation, Robbins College of Health and Human Sciences, Baylor University, Texas, USA
Peter L. McLennan
Affiliation:
Graduate School of Medicine, University of Wollongong, Wollongong, Australia Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia
Gregory E. Peoples*
Affiliation:
Graduate School of Medicine, University of Wollongong, Wollongong, Australia Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia
*
*Corresponding author: Gregory E. Peoples, email: peoples@uow.edu.au

Abstract

Long-chain omega-3 polyunsaturated fatty acid (LC n-3 PUFA) supplements, rich in eicosapentaenoic acid and/or docosahexaenoic acid, are increasingly being recommended within athletic institutions. However, the wide range of doses, durations and study designs implemented across trials makes it difficult to provide clear recommendations. The importance of study design characteristics in LC n-3 PUFA trials has been detailed in cardiovascular disease research, and these considerations may guide LC n-3 PUFA study design in healthy cohorts. This systematic review examined the quality of studies and study design considerations used in evaluating the evidence for LC n-3 PUFA improving performance in physically trained adults. SCOPUS, PubMed and Web of Science electronic databases were searched to identify studies that supplemented LC n-3 PUFA in physically trained participants. Forty-six (n = 46) studies met inclusion. Most studies used a randomised control design. Risk of bias, assessed using the design-appropriate Cochrane Collaboration tool, revealed that studies had a predominant judgment of ‘some concerns’, ‘high risk’ or ‘moderate risk’ in randomised controlled, randomised crossover or non-randomised studies, respectively. A custom five-point quality assessment scale demonstrated that no study satisfied all recommendations for LC n-3 PUFA study design. This review has highlighted that the disparate range of study designs is likely contributing to the inconclusive state of outcomes pertaining to LC n-3 PUFA as a potential ergogenic aid. Further research must adequately account for the specific LC n-3 PUFA study design considerations, underpinned by a clear hypothesis, to achieve evidence-based dose, duration and composition recommendations for physically trained individuals.

Type
Review Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hosick, MB (2019) 2019 Convention legislation: autonomy conferences. https://www.ncaa.org/news/2019/1/16/2019-convention-legislation-autonomy-conferences.aspx (accessed 01 16 2019).Google Scholar
Australian Institute of Sport (2021) AIS Sports Supplement Framework. Fish Oil (Omega-3 Fatty Acids – EPA and DHA). Australian Government.Google Scholar
McLennan, PL (2014) Cardiac physiology and clinical efficacy of dietary fish oil clarified through cellular mechanisms of omega-3 polyunsaturated fatty acids. Eur J Appl Physiol 114, 13331356.CrossRefGoogle ScholarPubMed
Harris, WS & Von Schacky, C (2004) The omega-3 index: a new risk factor for death from coronary heart disease? Prev Med 39, 212220.CrossRefGoogle ScholarPubMed
Anzalone, A, Carbuhn, A, Jones, L, et al. (2019) The omega-3 index in national collegiate athletic association division I collegiate football athletes. J Athl Train 54, 711.CrossRefGoogle Scholar
Ritz, PP, Rogers, MB, Zabinsky, JS, et al. (2020) Dietary and biological assessment of the omega-3 status of collegiate athletes: a cross-sectional analysis. PLoS One 15, e0228834.CrossRefGoogle ScholarPubMed
Rittenhouse, M, Scott, J & Deuster, P (2020) Healthy eating index and nutrition biomarkers among Army soldiers and civilian control group indicate an intervention is necessary to raise omega-3 index and vitamin D and improve diet quality. Nutrients 13, 122.CrossRefGoogle ScholarPubMed
Peoples, GE, Larsen, P, Bowes, HM, et al. (2022) The influence of a basic military training diet on whole blood fatty acid profile and the omega-3 Index of Australian Army recruits. Appl Physiol Nutr Metab 47, 151158.CrossRefGoogle ScholarPubMed
Heileson, JL, Anzalone, AJ, Carbuhn, AF, et al. (2021) The effect of omega-3 fatty acids on a biomarker of head trauma in NCAA football athletes: a multi-site, non-randomized study. J Int Soc Sports Nutr 18, 113.CrossRefGoogle ScholarPubMed
Oliver, JM, Jones, MT, Kirk, KM, et al. (2016) Effect of docosahexaenoic acid on a biomarker of head trauma in American football. Med Sci Sports Exerc 48, 974982.CrossRefGoogle ScholarPubMed
Raikes, AC, Hernandez, GD, Mullins, VA, et al. (2022) Effects of docosahexaenoic acid and eicosapentaoic acid supplementation on white matter integrity after repetitive sub-concussive head impacts during American football: exploratory neuroimaging findings from a pilot RCT. Front Neurol 13, 891531.CrossRefGoogle ScholarPubMed
Anthony, R, Macartney, MJ & Peoples, GE (2021) The influence of long-chain omega-3 fatty acids on eccentric exercise-induced delayed muscle soreness: reported outcomes are compromised by study design issues. Int J Sport Nutr Exerc Metab 31, 143153.CrossRefGoogle ScholarPubMed
Heileson, JL & Funderburk, LK (2020) The effect of fish oil supplementation on the promotion and preservation of lean body mass, strength, and recovery from physiological stress in young, healthy adults: a systematic review. Nutr Rev 78, 10011014.CrossRefGoogle ScholarPubMed
Macartney, MJ, Hingley, L, Brown, MA, et al. (2014) Intrinsic heart rate recovery after dynamic exercise is improved with an increased omega-3 index in healthy males. Br J Nutr 112, 19841992.CrossRefGoogle ScholarPubMed
Thielecke, F & Blannin, A (2020) Omega-3 fatty acids for sport performance-are they equally beneficial for athletes and amateurs? A narrative review. Nutrients 12, 128.CrossRefGoogle ScholarPubMed
D’Angelo, S & Madonna, G (2020) Effects of fish oil supplementation in the sport performance. J Phys Educ Sport 20, 23222329.Google Scholar
Mickleborough, TD (2013) Omega-3 polyunsaturated fatty acids in physical performance optimization. Int J Sport Nutr Exerc Metab 23, 8396.CrossRefGoogle ScholarPubMed
Shei, RJ, Lindley, MR & Mickleborough, TD (2014) Omega-3 polyunsaturated fatty acids in the optimization of physical performance. Mil Med 179, 144156.CrossRefGoogle ScholarPubMed
Philpott, JD, Witard, OC & Galloway, SDR (2019) Applications of omega-3 polyunsaturated fatty acid supplementation for sport performance. Res Sports Med 27, 219237.CrossRefGoogle ScholarPubMed
Murphy, CH & McGlory, C (2021) Fish oil for healthy aging: potential application to master athletes. Sports Med 51, 3141.CrossRefGoogle ScholarPubMed
Lewis, NA, Daniels, D, Calder, PC, et al. (2020) Are there benefits from the use of fish oil supplements in athletes? A systematic review. Adv Nutr 11, 13001314.CrossRefGoogle ScholarPubMed
James, MJ, Sullivan, TR, Metcalf, RG, et al. (2014) Pitfalls in the use of randomised controlled trials for fish oil studies with cardiac patients. Br J Nutr 112, 812820.CrossRefGoogle ScholarPubMed
McLennan, PL & Pepe, S (2015) Weighing up fish and omega-3 PUFA advice with accurate, balanced scales: stringent controls and measures required for clinical trials. Heart Lung Circ 24, 740743.CrossRefGoogle ScholarPubMed
Elagizi, A, Lavie, CJ, O’Keefe, E, et al. (2021) An update on omega-3 polyunsaturated fatty acids and cardiovascular health. Nutrients 13, 204.CrossRefGoogle ScholarPubMed
Browning, LM, Walker, CG, Mander, AP, et al. (2012) Incorporation of eicosapentaenoic and docosahexaenoic acids into lipid pools when given as supplements providing doses equivalent to typical intakes of oily fish. Am J Clin Nutr 96, 748758.CrossRefGoogle ScholarPubMed
Sterne, JAC, Savović, J, Page, MJ, et al. (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ (Clin Res Ed) 366, l4898.Google ScholarPubMed
Sterne, JA, Hernán, MA, Reeves, BC, et al. (2016) ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ (Clin Res Ed) 355, i4919.Google ScholarPubMed
Leaf, D & Rauch, C (1988) Omega-3 supplementation and estimated VO2 max: a double blind randomized controlled trial in athletes. Ann Sport Med 4, 3740.Google Scholar
Oostenbrug, GS, Mensink, RP, Hardeman, MR, et al. (1997) Exercise performance, red blood cell deformability, and lipid peroxidation: effects of fish oil and vitamin E. J Appl Physiol (Bethesda, MD: 1985) 83, 746752.CrossRefGoogle ScholarPubMed
Raastad, T, Hostmark, AT & Stramme, SB (1997) Omega-3 fatty acid supplementation does not improve maximal aerobic power, anaerobic threshold and running performance in well-trained soccer players. Scand J Med Sci Sports 7, 2531.CrossRefGoogle Scholar
Mickleborough, TD, Murray, RL, Ionescu, AA, et al. (2003) Fish oil supplementation reduces severity of exercise-induced bronchoconstriction in elite athletes. Am J Respir Crit Care Med 168, 11811189.CrossRefGoogle ScholarPubMed
Andrade, PM, Ribeiro, BG, Bozza, MT, et al. (2007) Effects of the fish-oil supplementation on the immune and inflammatory responses in elite swimmers. Prostaglandins Leukot Essent Fatty Acids 77, 139145.CrossRefGoogle ScholarPubMed
Malaguti, M, Baldini, M, Angeloni, C, et al. (2008) High-protein-PUFA supplementation, red blood cell membranes, and plasma antioxidant activity in volleyball athletes. Int J Sport Nutr Exerc Metab 18, 301312.CrossRefGoogle ScholarPubMed
Peoples, GE, McLennan, PL, Howe, PR, et al. (2008) Fish oil reduces heart rate and oxygen consumption during exercise. J Cardiovasc Pharmacol 52, 540547.CrossRefGoogle ScholarPubMed
Buckley, JD, Burgess, S, Murphy, KJ, et al. (2009) DHA-rich fish oil lowers heart rate during submaximal exercise in elite Australian Rules footballers. J Sci Med Sport 12, 503507.CrossRefGoogle ScholarPubMed
Fontani, G, Lodi, L, Migliorini, S, et al. (2009) Effect of omega-3 and policosanol supplementation on attention and reactivity in athletes. J Am Coll Nutr 28, 473S481S.CrossRefGoogle ScholarPubMed
Nieman, DC, Henson, DA, Maxwell, KR, et al. (2009) Effects of quercetin and EGCG on mitochondrial biogenesis and immunity. Med Sci Sports Exerc 41, 14671475.CrossRefGoogle ScholarPubMed
Nieman, DC, Henson, DA, McAnulty, SR, et al. (2009) n-3 polyunsaturated fatty acids do not alter immune and inflammation measures in endurance athletes. Int J Sport Nutr Exerc Metab 19, 536546.CrossRefGoogle Scholar
Reza, G, Mahmoud, D, Seyed Abolghassem, D, et al. (2009) Effects of eicosapentaenoic acid and vitamin E on the plasma levels of antioxidant vitamins and inflammatory markers, and on erythrocyte antioxidant enzyme activities, in male basketball players. Acta Med Iranica 47, 269274.Google Scholar
Filaire, E, Massart, A, Portier, H, et al. (2010) Effect of 6 weeks of n-3 fatty-acid supplementation on oxidative stress in Judo athletes. Int J Sport Nutr Exerc Metab 20, 496506.CrossRefGoogle ScholarPubMed
McAnulty, SR, Nieman, DC, Fox-Rabinovich, M, et al. (2010) Effect of n-3 fatty acids and antioxidants on oxidative stress after exercise. Med Sci Sports Exerc 42, 17041711.CrossRefGoogle ScholarPubMed
Skarpańska-Stejnborn, A, Pilaczyńska-Szcześniak, Ł, Basta, P, et al. (2010) Effects of supplementation with Neptune Krill Oil () on selected redox parameters and pro-inflammatory markers in athletes during exhaustive exercise. J Hum Kinet 25, 4957.CrossRefGoogle Scholar
Tartibian, B, Maleki, BH & Abbasi, A (2010) The effects of omega-3 supplementation on pulmonary function of young wrestlers during intensive training. J Sci Med Sport 13, 281286.CrossRefGoogle ScholarPubMed
Filaire, E, Massart, A, Rouveix, M, et al. (2011) Effects of 6 weeks of n-3 fatty acids and antioxidant mixture on lipid peroxidation at rest and postexercise. Eur J Appl Physiol 111, 18291839.CrossRefGoogle ScholarPubMed
Guzmán, JF, Esteve, H, Pablos, C, et al. (2011) DHA-rich fish oil improves complex reaction time in female elite soccer players. J Sports Sci Med 10, 301305.Google ScholarPubMed
McAnulty, SR, Nieman, DC, McAnulty, LS, et al. (2011) Effect of mixed flavonoids, n-3 fatty acids, and vitamin C on oxidative stress and antioxidant capacity before and after intense cycling. Int J Sport Nutr Exerc Metab 21, 328337.CrossRefGoogle ScholarPubMed
Atashak, S, Sharafi, H, Azarbayjani, MA, et al. (2013) Effect of omega-3 supplementation on the blood levels of oxidative stress, muscle damage and inflammation markers after acute resistance exercise in young athletes. Kinesiology 45, 2229.Google Scholar
Santos, VC, Levada-Pires, AC, Alves, SR, et al. (2013) Effects of DHA-rich fish oil supplementation on lymphocyte function before and after a marathon race. Int J Sport Nutr Exerc Metab 23, 161169.CrossRefGoogle ScholarPubMed
Capó, X, Martorell, M, Llompart, I, et al. (2014) Docosahexanoic acid diet supplementation attenuates the peripheral mononuclear cell inflammatory response to exercise following LPS activation. Cytokine 69, 155164.CrossRefGoogle ScholarPubMed
Martorell, M, Capó, X, Sureda, A, et al. (2014) Effect of DHA on plasma fatty acid availability and oxidative stress during training season and football exercise. Food Funct 5, 19201931.CrossRefGoogle ScholarPubMed
Capó, X, Martorell, M, Sureda, A, et al. (2015) Diet supplementation with DHA-enriched food in football players during training season enhances the mitochondrial antioxidant capabilities in blood mononuclear cells. Eur J Nutr 54, 3549.CrossRefGoogle ScholarPubMed
Capó, X, Martorell, M, Sureda, A, et al. (2015) Effects of docosahexaenoic supplementation and in vitro vitamin C on the oxidative and inflammatory neutrophil response to activation. Oxid Med Cell Longev 2015, 187849.CrossRefGoogle ScholarPubMed
Delfan, M, Ebrahim, K, Baesi, F, et al. (2015) The immunomodulatory effects of fish-oil supplementation in elite paddlers: a pilot randomized double blind placebo-controlled trial. Prostaglandins Leukot Essent Fatty Acids 99, 3540.CrossRefGoogle ScholarPubMed
Lewis, EJH, Radonic, PW, Wolever, TMS, et al. (2015) 21 days of mammalian omega-3 fatty acid supplementation improves aspects of neuromuscular function and performance in male athletes compared to olive oil placebo. J Int Soc Sports Nutr 12, 28.CrossRefGoogle ScholarPubMed
Martorell, M, Capo, X, Bibiloni, MM, et al. (2015) Docosahexaenoic acid supplementation promotes erythrocyte antioxidant defense and reduces protein nitrosative damage in male athletes. Lipids 50, 131148.CrossRefGoogle ScholarPubMed
Price, OJ, Hull, JH, Howatson, G, et al. (2015) Vitamin D and omega-3 polyunsaturated fatty acid supplementation in athletes with exercise-induced bronchoconstriction: a pilot study. Expert Rev Respir Med 9, 369378.CrossRefGoogle ScholarPubMed
Zebrowska, A, Mizia-Stec, K, Mizia, M, et al. (2015) Omega-3 fatty acids supplementation improves endothelial function and maximal oxygen uptake in endurance-trained athletes. Eur J Sport Sci 15, 305314.CrossRefGoogle ScholarPubMed
Gravina, L, Brown, FF, Alexander, L, et al. (2017) N-3 fatty acid supplementation during 4 weeks of training leads to improved anaerobic endurance capacity, but not maximal strength, speed, or power in soccer players. Int J Sport Nutr Exerc Metab 27, 305313.CrossRefGoogle ScholarPubMed
Hingley, L, Macartney, MJ, Brown, MA, et al. (2017) DHA-rich fish oil increases the omega-3 index and lowers the oxygen cost of physiologically stressful cycling in trained individuals. Int J Sport Nutr Exerc Metab 27, 335343.CrossRefGoogle ScholarPubMed
Jakeman, JR, Lambrick, DM, Wooley, B, et al. (2017) Effect of an acute dose of omega-3 fish oil following exercise-induced muscle damage. Eur J Appl Physiol 117, 575582.CrossRefGoogle ScholarPubMed
Black, KE, Witard, OC, Baker, D, et al. (2018) Adding omega-3 fatty acids to a protein-based supplement during pre-season training results in reduced muscle soreness and the better maintenance of explosive power in professional Rugby Union players. Eur J Sport Sci 18, 13571367.CrossRefGoogle ScholarPubMed
Bunn, JA, Crossley, A & Timiney, MD (2018) Acute ingestion of neuromuscular enhancement supplements do not improve power output, work capacity, and cognition. J Sports Med Phys Fitness 58, 974979.CrossRefGoogle Scholar
Georges, J, Sharp, MH, Lowery, RP, et al. (2018) The effects of krill oil on mTOR signaling and resistance exercise: a pilot study. J Nutr Metab 2018, 11.CrossRefGoogle ScholarPubMed
Philpott, JD, Donnelly, C, Walshe, IH, et al. (2018) Adding fish oil to whey protein, leucine, and carbohydrate over a six-week supplementation period attenuates muscle soreness following eccentric exercise in competitive soccer players. Int J Sport Nutr Exerc Metab 28, 2636.CrossRefGoogle Scholar
Philpott, JD, Bootsma, NJ, Rodriguez-Sanchez, N, et al. (2019) Influence of fish oil-derived n-3 fatty acid supplementation on changes in body composition and muscle strength during short-term weight loss in resistance-trained men. Front Nutr 6, 102.CrossRefGoogle ScholarPubMed
Ávila-Gandía, V, Torregrosa-García, A, Luque-Rubia, AJ, et al. (2020) Re-esterified DHA improves ventilatory threshold 2 in competitive amateur cyclists. J Int Soc Sports Nutr 17, 51.CrossRefGoogle ScholarPubMed
Buonocore, D, Verri, M, Giolitto, A, et al. (2020) Effect of 8-week n-3 fatty-acid supplementation on oxidative stress and inflammation in middle- and long-distance running athletes: a pilot study. J Int Soc Sports Nutr 17, 55.CrossRefGoogle ScholarPubMed
James, LJ, Wadley, AJ, Gyimah, B, et al. (2020) Four weeks of omega-3 supplementation does not improve cycling time trial performance in trained cyclists. Arch Sports Med 4, 233239.Google Scholar
Ramos-Campo, DJ, Avila-Gandia, V, Lopez-Roman, FJ, et al. (2020) Supplementation of re-esterified docosahexaenoic and eicosapentaenoic acids reduce inflammatory and muscle damage markers after exercise in endurance athletes: a randomized, controlled crossover trial. Nutrients 12, 719.CrossRefGoogle ScholarPubMed
Storsve, AB, Johnsen, L, Nyborg, C, et al. (2020) Effects of krill oil and race distance on serum choline and choline metabolites in triathletes: a field study. Front Nutr 7, 133.CrossRefGoogle ScholarPubMed
Drobnic, F, Storsve, AB, Burri, L, et al. (2021) Krill-oil-dependent increases in HS-omega-3 index, plasma choline and antioxidant capacity in well-conditioned power training athletes. Nutrients 13, 4237.CrossRefGoogle ScholarPubMed
Zebrowska, A, Hall, B, Stolecka-Warzecha, A, et al. (2021) The effect of omega-3 fatty acid supplementation on serum adipocytokines, lipid profile and biochemical markers of inflammation in recreational runners. Nutrients 13, 118.CrossRefGoogle Scholar
Calder, PC (2015) Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochim Biophys Acta 1851, 469484.CrossRefGoogle ScholarPubMed
Calder, PC (2018) Very long-chain n-3 fatty acids and human health: fact, fiction and the future. Proc Nutr Soc 77, 5272.CrossRefGoogle ScholarPubMed
McLennan, PL, Owen, AJ, Slee, EL, et al. (2007) Myocardial function, ischaemia and n-3 polyunsaturated fatty acids: a membrane basis. J Cardiovasc Med (Hagerstown) 8 Suppl 1, S15S18.CrossRefGoogle ScholarPubMed
McGlory, C, Wardle, SL, Macnaughton, LS, et al. (2016) Fish oil supplementation suppresses resistance exercise and feeding-induced increases in anabolic signaling without affecting myofibrillar protein synthesis in young men. Physiol Rep 4, e12715.CrossRefGoogle ScholarPubMed
McGlory, C, Galloway, SD, Hamilton, DL, et al. (2014) Temporal changes in human skeletal muscle and blood lipid composition with fish oil supplementation. Prostaglandins Leukot. Essent Fatty Acids 90, 199206.CrossRefGoogle ScholarPubMed
Smith, GI, Atherton, P, Reeds, DN, et al. (2011) Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia-hyperaminoacidaemia in healthy young and middle-aged men and women. Clin Sci (London, Engl: 1979) 121, 267278.CrossRefGoogle Scholar
Macartney, MJ, Peoples, GE, Treweek, TM, et al. (2019) Docosahexaenoic acid varies in rat skeletal muscle membranes according to fibre type and provision of dietary fish oil. Prostaglandins Leukot Essent Fatty Acids 151, 3744.CrossRefGoogle ScholarPubMed
Fenton, JI, Gurzell, EA, Davidson, EA, et al. (2016) Red blood cell PUFAs reflect the phospholipid PUFA composition of major organs. Prostaglandins Leukot. Essent Fatty Acids 112, 1223.CrossRefGoogle ScholarPubMed
Harris, WS & Thomas, RM (2010) Biological variability of blood omega-3 biomarkers. Clin Biochem 43, 338340.CrossRefGoogle ScholarPubMed
Cao, J, Schwichtenberg, KA, Hanson, NQ, et al. (2006) Incorporation and clearance of omega-3 fatty acids in erythrocyte membranes and plasma phospholipids. Clin Chem 52, 22652272.CrossRefGoogle ScholarPubMed
Harris, WS, Sands, SA, Windsor, SL, et al. (2004) Omega-3 fatty acids in cardiac biopsies from heart transplantation patients: correlation with erythrocytes and response to supplementation. Circulation 110, 16451649.CrossRefGoogle ScholarPubMed
Metcalf, RG, James, MJ, Gibson, RA, et al. (2007) Effects of fish-oil supplementation on myocardial fatty acids in humans. Am J Clin Nutr 85, 12221228.CrossRefGoogle ScholarPubMed
Metcalf, RG, Cleland, LG, Gibson, RA, et al. (2010) Relation between blood and atrial fatty acids in patients undergoing cardiac bypass surgery. Am J Clin Nutr 91, 528534.CrossRefGoogle ScholarPubMed
Brown, AJ, Pang, E & Roberts, DC (1991) Persistent changes in the fatty acid composition of erythrocyte membranes after moderate intake of n-3 polyunsaturated fatty acids: study design implications. Am J Clin Nutr 54, 668673.CrossRefGoogle ScholarPubMed
Katan, MB, Deslypere, JP, van Birgelen, AP, et al. (1997) Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: an 18-month controlled study. J Lipid Res 38, 20122022.CrossRefGoogle ScholarPubMed
Stark, KD, Van Elswyk, ME, Higgins, MR, et al. (2016) Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults. Prog Lipid Res 63, 132152.CrossRefGoogle ScholarPubMed
Meyer, BJ (2016) Australians are not meeting the recommended intakes for omega-3 long chain polyunsaturated fatty acids: results of an analysis from the 2011–2012 national nutrition and physical activity survey. Nutrients 8, 111.CrossRefGoogle Scholar
Thomas, DT, Erdman, KA & Burke, LM (2016) American College of Sports Medicine joint position statement. Nutrition and athletic performance. Med Sci Sports Exerc 48, 543568.Google ScholarPubMed
Jeacocke, NA & Burke, LM (2010) Methods to standardize dietary intake before performance testing. Int J Sport Nutr Exerc Metab 20, 87103.CrossRefGoogle ScholarPubMed
Magkos, F & Yannakoulia, M (2003) Methodology of dietary assessment in athletes: concepts and pitfalls. Curr Opin Clin Nutr Metab Care 6, 539549.CrossRefGoogle ScholarPubMed
Capling, L, Beck, KL, Gifford, JA, et al. (2017) Validity of dietary assessment in athletes: a systematic review. Nutrients 9, 1313.CrossRefGoogle ScholarPubMed
Serra-Majem, L, Nissensohn, M, Øverby, NC, et al. (2012) Dietary methods and biomarkers of omega 3 fatty acids: a systematic review. Br J Nutr 107 Suppl 2, S64S76.CrossRefGoogle ScholarPubMed
Fisk, HL, Kindberg, GM, Hustvedt, SO, et al. (2021) A novel n-3 glyceride mixture enhances enrichment of EPA and DHA after single dosing in healthy older adults: results from a double-blind crossover trial. Br J Nutr 126, 244252.CrossRefGoogle ScholarPubMed
West, AL, Kindberg, GM, Hustvedt, SO, et al. (2018) A novel self-micro-emulsifying delivery system enhances enrichment of eicosapentaenoic acid and docosahexaenoic acid after single and repeated dosing in healthy adults in a randomized trial. J Nutr 148, 17041715.CrossRefGoogle ScholarPubMed
Smith, GI, Julliand, S, Reeds, DN, et al. (2015) Fish oil-derived n-3 PUFA therapy increases muscle mass and function in healthy older adults. Am J Clin Nutr 102, 115122.CrossRefGoogle ScholarPubMed
Dalle, S, Van Roie, E, Hiroux, C, et al. (2021) Omega-3 supplementation improves isometric strength but not muscle anabolic and catabolic signaling in response to resistance exercise in healthy older adults. J Gerontol A Biol Sci Med Sci 76, 406414.CrossRefGoogle Scholar
Smith, GI, Atherton, P, Reeds, DN, et al. (2011) Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial. Am J Clin Nutr 93, 402412.CrossRefGoogle ScholarPubMed
Yoshino, J, Smith, GI, Kelly, SC, et al. (2016) Effect of dietary n-3 PUFA supplementation on the muscle transcriptome in older adults. Physiol Rep 4, e12785.CrossRefGoogle ScholarPubMed