Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-30T14:16:12.992Z Has data issue: false hasContentIssue false

The promise of paleobiology as a nomothetic, evolutionary discipline1

Published online by Cambridge University Press:  08 February 2016

Stephen Jay Gould*
Affiliation:
Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138

Abstract

During the past 20 years, paleobiology has established the foundations of a nomothetic science based upon evolutionary theory. This radical break with a past philosophy based on irreducible historical uniqueness is still impeded by (1) overreliance upon the inductivist methodology that embodied this previous philosophy, and (2) an unadventurous approach to biology that attempts passively to transfer the orthodoxies of microevolutionary theory across vast stretches of time and several levels of a hierarchy into the domain of macroevolution. I analyze the major trends of recent invertebrate paleobiology in the light of these two impediments. The formulation, by paleobiologists and with paleobiological data, of new macroevolutionary theories should end the subservience of passive transfer and contribute, in turn, to the formulation of a new, general theory of evolution that recognizes hierarchy and permits a set of unifying principles to work differently at various levels.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 1969. What will happen to geology? Nature. 221:903.CrossRefGoogle Scholar
Ayala, F. J., Valentine, J. W., DeLaca, T. E., and Zumwalt, G. S. 1975. Genetic variability of the Antarctic brachiopod Liothyrella notocordensis and its bearing on mass extinction hypotheses. J. Paleontol. 49:19.Google Scholar
Bakker, R. T. 1977. Tetrapod mass extinctions—a model of the regulation of speciation rates and immigration by cycles of topographic diversity. Pp. 441468. In: Hallam, A., ed. Patterns of Evolution. Elsevier; Amsterdam.Google Scholar
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology. 3:152167.CrossRefGoogle Scholar
Bateson, G. 1978. Mind and Nature. E. P. Dutton; New York.Google Scholar
Berlin, I. 1978. Concepts and Categories. Viking Press; New York.Google Scholar
Bretsky, P. W. and Bretsky, S. S. 1975. Succession and repetition of Late Ordovician fossil assemblages from the Nicolet River Valley, Quebec. Paleobiology. 1:225237.CrossRefGoogle Scholar
Bretsky, P. W. and Lorenz, D. M. 1970. Adaptive responses to environmental stability: a unifying concept in paleoecology. Proc. N. Am. Paleontol. Conv. (Part E). Pp. 522550.Google Scholar
Eldredge, N. 1974. Character displacement in evolutionary time. Am. Zool. 14:10831097.CrossRefGoogle Scholar
Eldredge, N. and Cracraft, J. 1980. Phylogenetic Patterns and the Evolutionary Process. Columbia Univ. Press; New York.Google Scholar
Eldredge, N. and Gould, S. J. 1972. Punctuated equilibria: An alternative to phyletic gradualism. Pp. 82115. In: Schopf, T. J. M., ed. Models in Paleobiology. Freeman, Cooper and Co.; San Francisco, California.Google Scholar
Ghiselin, M. 1974. A radical solution to the species problem. Syst. Zool. 23:536544.CrossRefGoogle Scholar
Gingerich, P. D. 1976. Paleontology and phylogeny: patterns of evolution at the species level in early Tertiary mammals. Am. J. Sci. 276:128.CrossRefGoogle Scholar
Gooch, J. L. and Schopf, T. J. M. 1973. Genetic varability in the deep sea: relation to environmental variability. Evolution. 26:545552.CrossRefGoogle Scholar
Gould, S. J. 1970a. Evolutionary paleontology and the science of form. Earth-Sci. Rev. 6:77119.CrossRefGoogle Scholar
Gould, S. J. 1970b. Dollo on Dollo's Law: Irreversibility and the status of evolutionary laws. J. Hist. Biol. 3:189212.CrossRefGoogle ScholarPubMed
Gould, S. J. 1977. Ontogeny and Phylogeny. 501 pp. Belknap Press of Harvard Univ. Press; Cambridge, Mass.Google Scholar
Gould, S. J. 1980. G. G. Simpson, paleontology and the modern synthesis. In: Mayr, E., ed. Conference on the making of the Modern Synthesis. Harvard Univ. Press; Cambridge, Mass.Google Scholar
Gould, S. J., Raup, D. M., Sepkoski, J. J. Jr., Schopf, T. J. M., and Simberloff, D. S. 1977. The shape of evolution: a comparison of real and random clades. Paleobiology. 3:2340.CrossRefGoogle Scholar
Gould, S. J. and Eldredge, N. 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology. 3:115151.CrossRefGoogle Scholar
Gould, S. J. and Lewontin, R. C. 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist program. Proc. R. Soc. London. 205:581598.Google Scholar
Hallam, A., ed. 1977. Patterns of Evolution. 591 pp. Elsevier; Amsterdam.Google Scholar
Hansen, T. 1978. Larval dispersal and species longevity in Lower Tertiary gastropods. Science. 199:885887.CrossRefGoogle ScholarPubMed
Kummel, B., ed. 1954. Status of invertebrate paleontology, 1953. Bull. Mus. Comp. Zool. 112:91317.Google Scholar
Lande, R. 1976. Natural selection and random genetic drift in phenotypic evolution. Evolution. 30:314334.CrossRefGoogle ScholarPubMed
Mivart, St. G. 1871. On the Genesis of Species. 296 pp. MacMillan; London.Google Scholar
Moore, R. C., ed. 1968. Developments, trends, and outlooks in paleontology. J. Paleontol. 42:13271377.Google Scholar
Nagel, E. 1952. The logic of historical analysis. Sci. Monthly, Vol. 74.Google Scholar
Olson, E. C. 1962. Late Permian terrestrial vertebrates: U.S.A. and U.S.S.R. Trans. Am. Phil. Soc. 52:3224.CrossRefGoogle Scholar
Osborn, H. F. 1922. Orthogenesis as observed from paleontological evidence beginning in the year 1889. Am. Nat. 56:134143.CrossRefGoogle Scholar
Ostrom, J. H. 1979. Bird flight: How did it begin. Am. Sci. 67:4656.Google ScholarPubMed
Platnick, N. I. and Nelson, G. 1978. A method of analysis for historical biogeography. Syst. Zool. 27:116.CrossRefGoogle Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. J. Paleontol. 40:11781190.Google Scholar
Raup, D. M. 1975. Taxonomic survivorship curves and Van Valen's Law. Paleobiology. 1:8296.CrossRefGoogle Scholar
Raup, D. M. 1978. Species diversity in the Phanerozoic: an interpretation. Paleobiology. 2:289297.CrossRefGoogle Scholar
Raup, D. M., Gould, S. J., Schopf, T. J. M., and Simberloff, D. S. 1973. Stochastic models of phylogeny and the evolution of diversity. J. Geol. 81:525542.CrossRefGoogle Scholar
Raup, D. M. and Gould, S. J. 1974. Stochastic simulation and evolution of morphology—towards a nomothetic paleontology. Syst. Zool. 23:305322.CrossRefGoogle Scholar
Riedl, R. 1978. Order in living organisms (translated by Jefferies, R. P. S.). 313 pp. John Wiley and Sons; New York.Google Scholar
Rollins, H. B., Carothers, M., and Donahue, J. 1979. Transgression, regression, and fossil community succession. Lethaia. 12:89104.CrossRefGoogle Scholar
Rosen, D. E. 1978. Vicariant patterns and historical explanation in biogeography. Syst. Zool. 27:159188.CrossRefGoogle Scholar
Rudwick, M. J. S. 1961. The feeding mechanism of the Permian brachiopod Prorichthofenia. Palaeontology. 3:450471.Google Scholar
Rudwick, M. J. S. 1964. The inference of function from structure in fossils. Brit. J. Phil. Sci. 15:2740.CrossRefGoogle Scholar
Schaeffer, B., Hecht, M. K., and Eldredge, N. 1972. Phylogeny and paleontology. Evol. Biol. 6:3146.Google Scholar
Schindel, D. E. and Gould, S. J. 1977. Biological interaction between fossil species: displacement in Bermudian land snails. Paleobiology. 3:259269.CrossRefGoogle Scholar
Schopf, T. J. M. 1972. Models in Paleobiology. 250 pp. Freeman, Cooper and Co.; San Francisco, California.Google Scholar
Schopf, T. J. M. 1974. Permo-Triassic extinctions: relationship to sea-floor spreading. J. Geol. 82:129143.CrossRefGoogle Scholar
Schweber, S. S. 1977. The origin of the Origin revisited. J. Hist. Biol. 10:229316.CrossRefGoogle ScholarPubMed
Seilacher, A. 1970. Arbeitskonzept zur Konstruktions-Morphologie. Lethaia. 3:393396.CrossRefGoogle Scholar
Seilacher, A. 1972. Divaricate patterns in pelecypod shells. Lethaia. 5:325343.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1975. Stratigraphic biases in the analysis of taxonomic survivorship. Paleobiology. 1:343355.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1976. Species diversity in the Phanerozoic: species-area effects. Paleobiology. 2:298303.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1978. A kinetic model of Phanerozoic taxonomic diversity I. Analysis of marine orders. Paleobiology. 4:223251.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1979. A kinetic model of Phanerozoic taxonomic diversity. II. Early Phanerozoic families and multiple equilibria. Paleobiology. 5:222251.CrossRefGoogle Scholar
Signor, P. W. III, 1978. Species richness in the Phanerozoic: an investigation of sampling effects. Paleobiology. 4:394406.CrossRefGoogle Scholar
Simberloff, D. S. 1974. Permo-Triassic extinctions: effects of area on biotic equilibrium. J. Geol. 82:267274.CrossRefGoogle Scholar
Simpson, G. G. 1944. Tempo and Mode in Evolution. 237 pp. Columbia Univ. Press; New York.Google Scholar
Simpson, G. G. 1953. The Major Features of Evolution. 434 pp. Columbia Univ. Press; New York.CrossRefGoogle Scholar
Sokal, R. R. and Sneath, P. H. A. 1963. Principles of Numerical Taxonomy. 359 pp. W. H. Freeman and Co.; San Francisco, California.Google Scholar
Solbrig, O. T. and Solbrig, D. J. 1979. Introduction to Population Biology and Evolution. 468 pp. Addison-Wesley; Reading, Mass.Google Scholar
Spearman, C. 1904. General intelligence objectivety determined and measured. Am. J. Psychol. 15:201293.CrossRefGoogle Scholar
Spearman, C. 1937. Psychology Down the Ages. 2 vols. 454 and 355 pp.MacMillan; London.Google Scholar
Stanley, S. M. 1975a. A theory of evolution above the species level. Proc. Nat. Acad. Sci. 72:646650.CrossRefGoogle ScholarPubMed
Stanley, S. M. 1975b. Adaptive themes in the evolution of the Bivalvia (Mollusca). Annu. Rev. Earth Planetary Sci. 3:361385.CrossRefGoogle Scholar
Stanley, S. M. 1977. Coadaptation in the Trigoniidae, a remarkable family of burrowing bivalves. Palaeontology. 20:869899.Google Scholar
Taylor, J. D., Kennedy, W. J., and Hall, A. 1973. The shell structure and mineralogy of the Bivalvia. II. Lucinacea-Clavagellacea. Conclusions. Bull. Brit. Mus. (Nat. Hist.) Zool. 22:253294.CrossRefGoogle Scholar
Thomas, R. D. K. 1975. Functional morphology, ecology, and evolutionary conservatism in the Glycymeridae (Bivalvia). Palaeontology. 18:217254.Google Scholar
Thomas, R. D. K. 1976. Constraints of ligament growth, form and function on evolution in the Arcoida (Mollusca: Bivalvia). Paleobiology. 2:6483.CrossRefGoogle Scholar
Thomas, R. D. K. 1978. Shell form and the ecological range of living and extinct Arcoida. Paleobiology. 4:181194.CrossRefGoogle Scholar
Thurstone, L. L. 1924. The Nature of Intelligence. 167 pp. Kegan Paul, Trench, Trubner and Co.; London.CrossRefGoogle Scholar
Thurstone, L. L. 1935. The Vectors of Mind. 266 pp. Univ. Chicago Press; Chicago.Google Scholar
Van Valen, L. 1973. A new evolutionary law. Evol. Theory 1:130.Google Scholar
Walker, K. R. and Alberstadt, L. P. 1975. Ecological succession as an aspect of structure in fossil communities. Paleobiology. 1:238257.CrossRefGoogle Scholar
Wilson, E. O. et al. 1973. Life on Earth. Sinauer Associates; Sunderland, Mass.Google Scholar