Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-20T16:20:14.625Z Has data issue: false hasContentIssue false

FUNCTIONAL MODELING IN THE DESIGN OF ADDITIVELY MANUFACTURED COMPONENTS

Published online by Cambridge University Press:  11 June 2020

E. Garrelts*
Affiliation:
University of Stuttgart, Germany
D. Roth
Affiliation:
University of Stuttgart, Germany
H. Binz
Affiliation:
University of Stuttgart, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This contribution investigates how methods for functional modeling support designers with additive manufacturing. Therefore, two methods for functional modeling are examined. In this contribution a study with 32 participants is presented. The participants solved two consecutive design tasks, in which some participants were supported by functional modeling methods in the second task. The study shows that students have the most difficulties in dealing with the geometric restrictions of Laser Beam Melting (LBM). Furthermore, the support value of functional modeling was not able to be assessed.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2020. Published by Cambridge University Press

References

Adam, G. (2015), Systematische Erarbeitung von Konstruktionsregeln für die additiven Fertigungsver-fahren Lasersintern, Laserschmelzen und Fused Deposition Modeling. Aachen: Shaker.Google Scholar
Andrich, D. and Marais, I. (2019), A Course in Rasch Measurement Theory, Springer, Singapore.CrossRefGoogle Scholar
Boyard, N. et al. (2013), “A design methodology for parts using additive manufacturing”, in Bártolo, P.J. (Ed.), High value manufacturing: Advanced research in virtual and rapid prototyping; proceedings of the 6th International Conference on Advanced Research and Rapid Prototyping, Leiria, Portugal, 1-5 October, 2013, CRC Press/Balkema, Boca Raton, Fla.Google Scholar
Dörner, D. (1979), Problemlösen als Informationsverarbeitung, Kohlhammer-Standards Psychologie Studientext, 2nd Edition, Kohlhammer, Stuttgart.Google Scholar
Doubrovski, E.L., Verlinden, J.C. and Horvath, I. (2012), “First steps towards collaboratively edited design for additive manufacturing knowledge”, in Solid Freeform Fabrication Symposium, Austin, Texas.Google Scholar
Gebhardt, A. (2016), Generative Fertigungsverfahren: Additive Manufacturing und 3D-Drucken für Prototyping - Tooling - Produktion, 5., neu bearbeitete und erweiterte Auflage, Hanser, München.CrossRefGoogle Scholar
Gockel, J. and Beuth, J. (2013), “Understanding Ti-6Al-4V microstructure control in additive manufacturing via process maps”, Solid Freeform Fabrication Proceedings, Austin, Texas, 12-14 August, 2013.Google Scholar
ISO 17296-2 (2015), “European Committee for Standardization. Additive manufacturing—General principles—Part 2: Overview of process categories and feedstock”.Google Scholar
Klahn, C. and Meboldt, M. (Eds.) (2018), Entwicklung und Konstruktion für die Additive Fertigung: Grundlagen und Methoden für den Einsatz in industriellen Endkundenprodukten, 1st Edn, Vogel Business Media, Würzburg.Google Scholar
Kumke, M. (2018), Methodisches Konstruieren von additiv gefertigten Bauteilen, Springer.CrossRefGoogle Scholar
Leutenecker-Twelsiek, B., Klahn, C. and Meboldt, M. (2016), “Considering Part Orientation in Design for Additive Manufacturing.” 26th CIRP Design Conference, pp. 408413.CrossRefGoogle Scholar
Lindemann, U. (Ed.) (2016), Handbuch Produktentwicklung. München, Carl Hanser Verlag, 2016.CrossRefGoogle Scholar
Lindemann, C. et al. (2015), “Towards a sustainable and economic selection of part candidates for additive manufacturing”, Rapid prototyping journal, Vol. 21 No. 2, pp. 216227.CrossRefGoogle Scholar
Otto, K.N. and Wood, K.L. (2001), Product design: Techniques in reverse engineering and new product development, Prentice Hall, Upper Saddle River, New Jersey.Google Scholar
Pahl, G. et al. (2007), Konstruktionslehre: Grundlagen erfolgreicher Produktentwicklung; Methoden und Anwendung, 7th Edition, Springer, Berlin, Heidelberg.Google Scholar
Ponn, J.C. and Lindemann, U. (2011), Konzeptentwicklung und Gestaltung technischer Produkte: Systematisch von Anforderungen zu Konzepten und Gestaltlösungen, VDI-Buch, 2nd Edition, Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg.CrossRefGoogle Scholar
Poprawe, R. et al. (2015), “SLM production systems: recent developments in process development, machine concepts and component design”, in Brecher, C. (Ed.), Advances in Production Technology, Springer International Publishing, Cham, pp. 4965.CrossRefGoogle Scholar
Read, N. et al. (2015), “Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development”, Materials & Design, Vol. 65, pp. 417424.CrossRefGoogle Scholar
Rodrigue, H. and Rivette, M. (2010), “An assembly-level design for additive manufacturing methodology”, in Proceedings of IDMME - Virtual Concept 2010, Bordeaux, France.Google Scholar
Schumacher, F. et al. (2019), “Goal Oriented Provision of Design Principles for Additive Manufacturing to Support Conceptual Design”, Proceedings of the Design Society: International Conference on Engineering Design, Vol. 1 No. 1, pp. 749758.Google Scholar
Valjak, F., Bojčetić, N. and Lukić, M. (2018), “Design for additive manufacturing: Mapping of product functions”, in Marjanović, D., Štorga, M., Škec, S., Bojčetić, N. and Pavković, N. (Eds.), Proceedings of the DESIGN 2018, 15th International Design Conference, Dobrovnik, Croatia, May, 21-24, 2018, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia; The Design Society, Glasgow, UK, pp. 13691380.CrossRefGoogle Scholar
Valjak, F. and Bojčetić, N. (2019), “Conception of Design Principles for Additive Manufacturing”, Proceedings of the Design Society: International Conference on Engineering Design, Vol. 1 No. 1, pp. 689698.Google Scholar
Verein Deutscher Ingenieure (2014), Additive manufacturing processes, rapid manufacturing Basics, definitions, processes, ICS 25.020 No. 3405, Beuth Verlag, Berlin.Google Scholar
Verein Deutscher Ingenieure (2013), Additive manufacturing processes, rapid manufacturing, Beam melting of metallic parts,Qualification, quality assurance and post processing. ICS 03.120.10, 25.020 No. 3405 - 2, Beuth Verlag, Berlin.Google Scholar
Wohlers (2017), Wohlers report 2017: 3D printing and additive manufacturing state of the industry. Fort Collins, Colorado: Wohlers Associates, 2017.Google Scholar
Weiss, F. (2019), “Untersuchung des Entwicklungsprozesses für additiv gefertigte Bauteile mittels Bereitstellung einer elementaren Informationsstruktur”, Dissertation, Institut für Konstruktionstechnik und Technisches Design, Universität Stuttgart, Stuttgart, 2019.Google Scholar